Testing the Significance of the Correlation Coefficient

The correlation coefficient, r, tells us about the strength and direction of the linear relationship between x and y. However, the reliability of the linear model also depends on how many observed data points are in the sample. We need to look at both the value of the correlation coefficient r and the sample size n, together.

We perform a hypothesis test of the "significance of the correlation coefficient" to decide whether the linear relationship in the sample data is strong enough to use to model the relationship in the population.

The sample data are used to compute r, the correlation coefficient for the sample. If we had data for the entire population, we could find the population correlation coefficient. But because we have only have sample data, we cannot calculate the population correlation coefficient. The sample correlation coefficient, r, is our estimate of the unknown population correlation coefficient.

The hypothesis test lets us decide whether the value of the population correlation coefficient ρ is "close to zero" or "significantly different from zero". We decide this based on the sample correlation coefficient r and the sample size n.

If the test concludes that the correlation coefficient is significantly different from zero, we say that the correlation coefficient is "significant."

If the test concludes that the correlation coefficient is not significantly different from zero (it is close to zero), we say that correlation coefficient is "not significant".

Note

PERFORMING THE HYPOTHESIS TEST

WHAT THE HYPOTHESES MEAN IN WORDS:

DRAWING A CONCLUSION:There are two methods of making the decision. The two methods are equivalent and give the same result.

In this chapter of this textbook, we will always use a significance level of 5%, α = 0.05

Note

Using the p-value method, you could choose any appropriate significance level you want; you are not limited to using α = 0.05. But the table of critical values provided in this textbook assumes that we are using a significance level of 5%, α = 0.05. (If we wanted to use a different significance level than 5% with the critical value method, we would need different tables of critical values that are not provided in this textbook.)

METHOD 1: Using a p-value to make a decision

To calculate the p-value using LinRegTTEST:* * *

On the LinRegTTEST input screen, on the line prompt for β or ρ, highlight "≠ 0"* * *

The output screen shows the p-value on the line that reads "p =".* * *

(Most computer statistical software can calculate the p-value.)

If the *p*-value is less than the significance level (*α* = 0.05):
If the *p*-value is NOT less than the significance level (*α* = 0.05)
Calculation Notes:

An alternative way to calculate the p-value (p) given by LinRegTTest is the command 2*tcdf(abs(t),10^99, n-2) in 2nd DISTR.

THIRD-EXAM vs FINAL-EXAM EXAMPLE: *p*-value method

H0: ρ = 0

Ha: ρ ≠ 0

α = 0.05

Because r is significant and the scatter plot shows a linear trend, the regression line can be used to predict final exam scores.

METHOD 2: Using a table of Critical Values to make a decision

The 95% Critical Values of the Sample Correlation Coefficient Table can be used to give you a good idea of whether the computed value of **r

is significant or not*. Compare *r to the appropriate critical value in the table. If r is not between the positive and negative critical values, then the correlation coefficient is significant. If r is significant, then you may want to use the line for prediction.

Suppose you computed r = 0.801 using n = 10 data points.df = n - 2 = 10 - 2 = 8. The critical values associated with df = 8 are -0.632 and + 0.632. If r < negative critical value or r > positive critical value, then r issignificant. Since r = 0.801 and 0.801 > 0.632, r is significant and the line may be usedfor prediction. If you view this example on a number line, it will help you.

Horizontal number line with values of -1, -0.632, 0, 0.632, 0.801, and 1. A dashed line above values -0.632, 0, and 0.632 indicates not significant values.

Try It

For a given line of best fit, you computed that r = 0.6501 using n = 12 data points and the critical value is 0.576. Can the line be used for prediction? Why or why not?

Suppose you computed r = –0.624 with 14 data points. df = 14 – 2 = 12. The critical values are –0.532 and 0.532. Since –0.624 < –0.532, r is significant and the line can be used for prediction

Horizontal number line with values of -0.624, -0.532, and 0.532.

Try It

For a given line of best fit, you compute that r = 0.5204 using n = 9 data points, and the critical value is 0.666. Can the line be used for prediction? Why or why not?

Suppose you computed r = 0.776 and n = 6. df = 6 – 2 = 4. The critical values are –0.811 and 0.811. Since –0.811 < 0.776 < 0.811, r is not significant, and the line should not be used for prediction.

Horizontal number line with values -0.924, -0.532, and 0.532.

Try It

For a given line of best fit, you compute that r = –0.7204 using n = 8 data points, and the critical value is = 0.707. Can the line be used for prediction? Why or why not?

THIRD-EXAM vs FINAL-EXAM EXAMPLE: critical value method

Consider the third exam/final exam example. The line of best fit is: ŷ = –173.51+4.83x with r = 0.6631 and there are n = 11 data points. Can the regression line be used for prediction? Given a third-exam score (x value), can we use the line to predict the final exam score (predicted y value)?

Because r is significant and the scatter plot shows a linear trend, the regression line can be used to predict final exam scores.

Suppose you computed the following correlation coefficients. Using the table at the end of the chapter, determine if r is significant and the line of best fit associated with each r can be used to predict a y value. If it helps, draw a number line.

  1. r = –0.567 and the sample size, n, is 19. The df = n – 2 = 17. The critical value is –0.456. –0.567 < –0.456 so r is significant.
  2. r = 0.708 and the sample size, n, is nine. The df = n – 2 = 7. The critical value is 0.666. 0.708 > 0.666 so r is significant.
  3. r = 0.134 and the sample size, n, is 14. The df = 14 – 2 = 12. The critical value is 0.532. 0.134 is between –0.532 and 0.532 so r is not significant.
  4. r = 0 and the sample size, n, is five. No matter what the dfs are, r = 0 is between the two critical values so r is not significant.
Try It

For a given line of best fit, you compute that r = 0 using n = 100 data points. Can the line be used for prediction? Why or why not?

Assumptions in Testing the Significance of the Correlation Coefficient

Testing the significance of the correlation coefficient requires that certain assumptions about the data are satisfied. The premise of this test is that the data are a sample of observed points taken from a larger population. We have not examined the entire population because it is not possible or feasible to do so. We are examining the sample to draw a conclusion about whether the linear relationship that we see between x and y in the sample data provides strong enough evidence so that we can conclude that there is a linear relationship between x and y in the population.

The regression line equation that we calculate from the sample data gives the best-fit line for our particular sample. We want to use this best-fit line for the sample as an estimate of the best-fit line for the population. Examining the scatterplot and testing the significance of the correlation coefficient helps us determine if it is appropriate to do this.

The assumptions underlying the test of significance are:

The left graph shows three sets of points. Each set falls in a vertical line. The points in each set are normally distributed along the line — they are densely packed in the middle and more spread out at the top and bottom. A downward sloping regression line passes through the mean of each set. The right graph shows the same regression line plotted. A vertical normal curve is shown for each line.

Chapter Review

Linear regression is a procedure for fitting a straight line of the form ŷ = a + bx to data. The conditions for regression are:

The slope b and intercept a of the least-squares line estimate the slope β and intercept α of the population (true) regression line. To estimate the population standard deviation of y, σ, use the standard deviation of the residuals, s. s= SEE n2

. The variable ρ (rho) is the population correlation coefficient. To test the null hypothesis H0: ρ = hypothesized value, use a linear regression t-test. The most common null hypothesis is H0: ρ = 0 which indicates there is no linear relationship between x and y in the population. The TI-83, 83+, 84, 84+ calculator function LinRegTTest can perform this test (STATS TESTS LinRegTTest).

Formula Review

Least Squares Line or Line of Best Fit:

y ^ =a+bx

where

a = y-intercept

b = slope

Standard deviation of the residuals:

s= SEE n2 .

where

SSE = sum of squared errors

n = the number of data points

When testing the significance of the correlation coefficient, what is the null hypothesis?

When testing the significance of the correlation coefficient, what is the alternative hypothesis?

Ha: ρ ≠ 0

If the level of significance is 0.05 and the p-value is 0.04, what conclusion can you draw?


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

You can also download for free at http://cnx.org/contents/30189442-6998-4686-ac05-ed152b91b9de@21.1

Attribution: