Recall the third exam/final exam example.
We examined the scatterplot and showed that the correlation coefficient is significant. We found the equation of the best-fit line for the final exam grade as a function of the grade on the third-exam. We can now use the least-squares regression line for prediction.
Suppose you want to estimate, or predict, the mean final exam score of statistics students who received 73 on the third exam. The exam scores (x-values) range from 65 to 75. Since 73 is between the x-values 65 and 75, substitute x = 73 into the equation. Then:
We predict that statistics students who earn a grade of 73 on the third exam will earn a grade of 179.08 on the final exam, on average.
Recall the third exam/final exam example.* * *
a. What would you predict the final exam score to be for a student who scored a 66 on the third exam?
a. 145.27* * *
b. What would you predict the final exam score to be for a student who scored a 90 on the third exam?
b. The x values in the data are between 65 and 75. Ninety is outside of the domain of the observed x values in the data (independent variable), so you cannot reliably predict the final exam score for this student. (Even though it is possible to enter 90 into the equation for x and calculate a corresponding y value, the y value that you get will not be reliable.) * * *
To understand really how unreliable the prediction can be outside of the observed x values observed in the data, make the substitution x = 90 into the equation. * * *
The final-exam score is predicted to be 261.19. The largest the final-exam score can be is 200. * * *
Note The process of predicting inside of the observed x values observed in the data is called interpolation. The process of predicting outside of the observed x values observed in the data is called extrapolation.
Data are collected on the relationship between the number of hours per week practicing a musical instrument and scores on a math test. The line of best fit is as follows:
ŷ = 72.5 + 2.8x * * *
What would you predict the score on a math test would be for a student who practices a musical instrument for five hours a week?
Data from the Centers for Disease Control and Prevention.
Data from the National Center for agency reporting flu cases and TB Prevention.
Data from the United States Census Bureau. Available online at http://www.census.gov/compendia/statab/cats/transportation/motor\_vehicle\_accidents\_and\_fatalities.html
Data from the National Center for Health Statistics.
After determining the presence of a strong correlation coefficient and calculating the line of best fit, you can use the least squares regression line to make predictions about your data.
Use the following information to answer the next two exercises. An electronics retailer used regression to find a simple model to predict sales growth in the first quarter of the new year (January through March). The model is good for 90 days, where x is the day. The model can be written as follows:
ŷ = 101.32 + 2.48x where ŷ is in thousands of dollars.
What would you predict the sales to be on day 60?
$250,120
What would you predict the sales to be on day 90?
Use the following information to answer the next three exercises. A landscaping company is hired to mow the grass for several large properties. The total area of the properties combined is 1,345 acres. The rate at which one person can mow is as follows:
ŷ = 1350 – 1.2x where x is the number of hours and ŷ represents the number of acres left to mow.
How many acres will be left to mow after 20 hours of work?
1,326 acres
How many acres will be left to mow after 100 hours of work?
How many hours will it take to mow all of the lawns? (When is ŷ = 0?)
1,125 hours, or when x = 1,125
[link] contains real data for the first two decades of flu cases reporting.
Year | # flu cases diagnosed | # flu deaths |
Pre-1981 | 91 | 29 |
1981 | 319 | 121 |
1982 | 1,170 | 453 |
1983 | 3,076 | 1,482 |
1984 | 6,240 | 3,466 |
1985 | 11,776 | 6,878 |
1986 | 19,032 | 11,987 |
1987 | 28,564 | 16,162 |
1988 | 35,447 | 20,868 |
1989 | 42,674 | 27,591 |
1990 | 48,634 | 31,335 |
1991 | 59,660 | 36,560 |
1992 | 78,530 | 41,055 |
1993 | 78,834 | 44,730 |
1994 | 71,874 | 49,095 |
1995 | 68,505 | 49,456 |
1996 | 59,347 | 38,510 |
1997 | 47,149 | 20,736 |
1998 | 38,393 | 19,005 |
1999 | 25,174 | 18,454 |
2000 | 25,522 | 17,347 |
2001 | 25,643 | 17,402 |
2002 | 26,464 | 16,371 |
Total | 802,118 | 489,093 |
Graph “year” versus “# flu cases diagnosed” (plot the scatter plot). Do not include pre-1981 data.
Perform linear regression. What is the linear equation? Round to the nearest whole number.
Check student’s solution.
Find the correlation coefficient.* * *
Solve.
Does the line seem to fit the data? Why or why not?
What does the correlation imply about the relationship between time (years) and the number of diagnosed flu cases reported in the U.S.?
Also, the correlation r = 0.4526. If r is compared to the value in the 95% Critical Values of the Sample Correlation Coefficient Table, because r > 0.423, r is significant, and you would think that the line could be used for prediction. But the scatter plot indicates otherwise.
Plot the two given points on the following graph. Then, connect the two points to form the regression line.
{:}
Obtain the graph on your calculator or computer.
Write the equation: ŷ= ____________
= 3,448,225 + 1750x
Hand draw a smooth curve on the graph that shows the flow of the data.
Does the line seem to fit the data? Why or why not?
There was an increase in flu cases diagnosed until 1993. From 1993 through 2002, the number of flu cases diagnosed declined each year. It is not appropriate to use a linear regression line to fit to the data.
Do you think a linear fit is best? Why or why not?
What does the correlation imply about the relationship between time (years) and the number of diagnosed flu cases reported in the U.S.?
Since there is no linear association between year and # of flu cases diagnosed, it is not appropriate to calculate a linear correlation coefficient. When there is a linear association and it is appropriate to calculate a correlation, we cannot say that one variable “causes” the other variable.
Graph “year” vs. “# flu cases diagnosed.” Do not include pre-1981. Label both axes with words. Scale both axes.
Enter your data into your calculator or computer. The pre-1981 data should not be included. Why is that so?
Write the linear equation, rounding to four decimal places:
We don’t know if the pre-1981 data was collected from a single year. So we don’t have an accurate x value for this figure.
Regression equation: ŷ (#Flu Cases) = –3,448,225 + 1749.777 (year)
Coefficients | |
---|---|
Intercept | –3,448,225 |
X Variable 1 | 1,749.777 |
Find the correlation coefficient.
Recently, the annual number of driver deaths per 100,000 for the selected age groups was as follows:
Age | Number of Driver Deaths per 100,000 |
---|---|
16–19 | 38 |
20–24 | 36 |
25–34 | 24 |
35–54 | 20 |
55–74 | 18 |
75+ | 28 |
Age | Number of Driver Deaths per 100,000 |
---|---|
16–19 | 38 |
20–24 | 36 |
25–34 | 24 |
35–54 | 20 |
55–74 | 18 |
75+ | 28 |
For four df and alpha = 0.05, the LinRegTTest gives p-value = 0.2288 so we do not reject the null hypothesis; there is not a significant linear relationship between deaths and age.
Using the table of critical values for the correlation coefficient, with four df, the critical value is 0.811. The correlation coefficient r = –0.57874 is not less than –0.811, so we do not reject the null hypothesis.
[link] shows the life expectancy for an individual born in the United States in certain years.
Year of Birth | Life Expectancy |
---|---|
1930 | 59.7 |
1940 | 62.9 |
1950 | 70.2 |
1965 | 69.7 |
1973 | 71.4 |
1982 | 74.5 |
1987 | 75 |
1992 | 75.7 |
2010 | 78.7 |
The maximum discount value of the Entertainment® card for the “Fine Dining” section, Edition ten, for various pages is given in [link]
Page number | Maximum value ($) |
---|---|
4 | 16 |
14 | 19 |
25 | 15 |
32 | 17 |
43 | 19 |
57 | 15 |
72 | 16 |
85 | 15 |
90 | 17 |
For seven df and alpha = 0.05, using LinRegTTest p-value = 0.4736 so we do not reject; there is a not a significant linear relationship between page and discount.
Using the table of critical values for the correlation coefficient, with seven df, the critical value is 0.666. The correlation coefficient xi = –0.2752 is not less than 0.666 so we do not reject.
As the page number increases by one page, the discount decreases by $0.01412
[link] gives the gold medal times for every other Summer Olympics for the women’s 100-meter freestyle (swimming).
Year | Time (seconds) |
---|---|
1912 | 82.2 |
1924 | 72.4 |
1932 | 66.8 |
1952 | 66.8 |
1960 | 61.2 |
1968 | 60.0 |
1976 | 55.65 |
1984 | 55.92 |
1992 | 54.64 |
2000 | 53.8 |
2008 | 53.1 |
State | # letters in name | Year entered the Union | Rank for entering the Union | Area (square miles) |
---|---|---|---|---|
Alabama | 7 | 1819 | 22 | 52,423 |
Colorado | 8 | 1876 | 38 | 104,100 |
Hawaii | 6 | 1959 | 50 | 10,932 |
Iowa | 4 | 1846 | 29 | 56,276 |
Maryland | 8 | 1788 | 7 | 12,407 |
Missouri | 8 | 1821 | 24 | 69,709 |
New Jersey | 9 | 1787 | 3 | 8,722 |
Ohio | 4 | 1803 | 17 | 44,828 |
South Carolina | 13 | 1788 | 8 | 32,008 |
Utah | 4 | 1896 | 45 | 84,904 |
Wisconsin | 9 | 1848 | 30 | 65,499 |
We are interested in whether or not the number of letters in a state name depends upon the year the state entered the Union.
You can also download for free at http://cnx.org/contents/30189442-6998-4686-ac05-ed152b91b9de@21.1
Attribution: