There are two main characteristics of a Poisson experiment.
The random variable X = the number of occurrences in the interval of interest.
The average number of loaves of bread put on a shelf in a bakery in a half-hour period is 12. Of interest is the number of loaves of bread put on the shelf in five minutes. The time interval of interest is five minutes. What is the probability that the number of loaves, selected randomly, put on the shelf in five minutes is three?
Let X = the number of loaves of bread put on the shelf in five minutes. If the average number of loaves put on the shelf in 30 minutes (half-hour) is 12, then the average number of loaves put on the shelf in five minutes is
(12) = 2 loaves of bread.
The probability question asks you to find P(x = 3).
The average number of fish caught in an hour is eight. Of interest is the number of fish caught in 15 minutes. The time interval of interest is 15 minutes. What is the average number of fish caught in 15 minutes?
A bank expects to receive six bad checks per day, on average. What is the probability of the bank getting fewer than five bad checks on any given day? Of interest is the number of checks the bank receives in one day, so the time interval of interest is one day. Let X = the number of bad checks the bank receives in one day. If the bank expects to receive six bad checks per day then the average is six checks per day. Write a mathematical statement for the probability question.
P(x < 5)
An electronics store expects to have ten returns per day on average. The manager wants to know the probability of the store getting fewer than eight returns on any given day. State the probability question mathematically.
You notice that a news reporter says "uh," on average, two times per broadcast. What is the probability that the news reporter says "uh" more than two times per broadcast.
This is a Poisson problem because you are interested in knowing the number of times the news reporter says "uh" during a broadcast.* * *
a. What is the interval of interest?
a. one broadcast* * *
b. What is the average number of times the news reporter says “uh” during one broadcast?
b. 2* * *
c. Let X = ____________. What values does X take on?
c. Let X = the number of times the news reporter says “uh” during one broadcast. * * *
x = 0, 1, 2, 3, …* * *
d. The probability question is P(______).
d. P(x > 2)
An emergency room at a particular hospital gets an average of five patients per hour. A doctor wants to know the probability that the ER gets more than five patients per hour. Give the reason why this would be a Poisson distribution.
X ~ P(μ)
Read this as "X is a random variable with a Poisson distribution." The parameter is μ (or λ); μ (or λ) = the mean for the interval of interest.
Leah's answering machine receives about six telephone calls between 8 a.m. and 10 a.m. What is the probability that Leah receives more than one call in the next 15 minutes?
Let X = the number of calls Leah receives in 15 minutes. (The interval of interest is 15 minutes or
hour.)
x = 0, 1, 2, 3, …
If Leah receives, on the average, six telephone calls in two hours, and there are eight 15 minute intervals in two hours, then Leah receives
(6) = 0.75 calls in 15 minutes, on average. So, μ = 0.75 for this problem.
X ~ P(0.75)
Find P(x > 1). P(x > 1) = 0.1734 (calculator or computer)
The TI calculators use λ (lambda) for the mean.
The probability that Leah receives more than one telephone call in the next 15 minutes is about 0.1734: * * *
P(x > 1) = 1 − poissoncdf(0.75, 1).
The graph of X ~ P(0.75) is:
{:}
The y-axis contains the probability of x where X = the number of calls in 15 minutes.
A customer service center receives about ten emails every half-hour. What is the probability that the customer service center receives more than four emails in the next six minutes? Use the TI-83+ or TI-84 calculator to find the answer.
According to Baydin, an email management company, an email user gets, on average, 147 emails per day. Let X = the number of emails an email user receives per day. The discrete random variable X takes on the values x = 0, 1, 2 …. The random variable X has a Poisson distribution: X ~ P(147). The mean is 147 emails.
According to a recent poll by the Pew Internet Project, girls between the ages of 14 and 17 send an average of 187 text messages each day. Let X = the number of texts that a girl aged 14 to 17 sends per day. The discrete random variable X takes on the values x = 0, 1, 2 …. The random variable X has a Poisson distribution: X ~ P(187). The mean is 187 text messages.
Text message users receive or send an average of 41.5 text messages per day.
≈ 1.7292.
Atlanta’s Hartsfield-Jackson International Airport is the busiest airport in the world. On average there are 2,500 arrivals and departures each day.
On May 13, 2013, starting at 4:30 PM, the probability of low seismic activity for the next 48 hours in Alaska was reported as about 1.02%. Use this information for the next 200 days to find the probability that there will be low seismic activity in ten of the next 200 days. Use both the binomial and Poisson distributions to calculate the probabilities. Are they close?
Let X = the number of days with low seismic activity.
Using the binomial distribution:
Using the Poisson distribution:
We expect the approximation to be good because n is large (greater than 20) and p is small (less than 0.05). The results are close—both probabilities reported are almost 0.
On May 13, 2013, starting at 4:30 PM, the probability of moderate seismic activity for the next 48 hours in the Kuril Islands off the coast of Japan was reported at about 1.43%. Use this information for the next 100 days to find the probability that there will be low seismic activity in five of the next 100 days. Use both the binomial and Poisson distributions to calculate the probabilities. Are they close?
“ATL Fact Sheet,” Department of Aviation at the Hartsfield-Jackson Atlanta International Airport, 2013. Available online at http://www.atlanta-airport.com/Airport/ATL/ATL\_FactSheet.aspx (accessed May 15, 2013).
Center for Disease Control and Prevention. “Teen Drivers: Fact Sheet,” Injury Prevention & Control: Motor Vehicle Safety, October 2, 2012. Available online at http://www.cdc.gov/Motorvehiclesafety/Teen\_Drivers/teendrivers\_factsheet.html (accessed May 15, 2013).
“Children and Childrearing,” Ministry of Health, Labour, and Welfare. Available online at http://www.mhlw.go.jp/english/policy/children/children-childrearing/index.html (accessed May 15, 2013).
“Eating Disorder Statistics,” South Carolina Department of Mental Health, 2006. Available online at http://www.state.sc.us/dmh/anorexia/statistics.htm (accessed May 15, 2013).
“Giving Birth in Manila: The maternity ward at the Dr Jose Fabella Memorial Hospital in Manila, the busiest in the Philippines, where there is an average of 60 births a day,” theguardian, 2013. Available online at http://www.theguardian.com/world/gallery/2011/jun/08/philippines-health#/?picture=375471900&index=2 (accessed May 15, 2013).
“How Americans Use Text Messaging,” Pew Internet, 2013. Available online at http://pewinternet.org/Reports/2011/Cell-Phone-Texting-2011/Main-Report.aspx (accessed May 15, 2013).
Lenhart, Amanda. “Teens, Smartphones & Testing: Texting volum is up while the frequency of voice calling is down. About one in four teens say they own smartphones,” Pew Internet, 2012. Available online at http://www.pewinternet.org/~/media/Files/Reports/2012/PIP\_Teens\_Smartphones\_and\_Texting.pdf (accessed May 15, 2013).
“One born every minute: the maternity unit where mothers are THREE to a bed,” MailOnline. Available online at http://www.dailymail.co.uk/news/article-2001422/Busiest-maternity-ward-planet-averages-60-babies-day-mothers-bed.html (accessed May 15, 2013).
Vanderkam, Laura. “Stop Checking Your Email, Now.” CNNMoney, 2013. Available online at http://management.fortune.cnn.com/2012/10/08/stop-checking-your-email-now/ (accessed May 15, 2013).
“World Earthquakes: Live Earthquake News and Highlights,” World Earthquakes, 2012. http://www.world-earthquakes.com/index.php?option=ethq\_prediction (accessed May 15, 2013).
A Poisson probability distribution of a discrete random variable gives the probability of a number of events occurring in a fixed interval of time or space, if these events happen at a known average rate and independently of the time since the last event. The Poisson distribution may be used to approximate the binomial, if the probability of success is "small" (less than or equal to 0.05) and the number of trials is "large" (greater than or equal to 20).
X ~ P(μ) means that X has a Poisson probability distribution where X = the number of occurrences in the interval of interest.
X takes on the values x = 0, 1, 2, 3, …
The mean μ is typically given.
The variance is σ2 = μ, and the standard deviation is * * *
.
When P(μ) is used to approximate a binomial distribution, μ = np where n represents the number of independent trials and p represents the probability of success in a single trial.
Use the following information to answer the next six exercises: On average, a clothing store gets 120 customers per day.
Assume the event occurs independently in any given day. Define the random variable X.
What values does X take on?
0, 1, 2, 3, 4, …
What is the probability of getting 150 customers in one day?
What is the probability of getting 35 customers in the first four hours? Assume the store is open 12 hours each day.
0.0485
What is the probability that the store will have more than 12 customers in the first hour?
What is the probability that the store will have fewer than 12 customers in the first two hours?
0.0214
Which type of distribution can the Poisson model be used to approximate? When would you do this?
Use the following information to answer the next six exercises: On average, eight teens in the U.S. die from motor vehicle injuries per day. As a result, states across the country are debating raising the driving age.
Assume the event occurs independently in any given day. In words, define the random variable X.
X = the number of U.S. teens who die from motor vehicle injuries per day.
X ~ \_\_\_\_\_(\_\_\_\_\_,\_\_\_\_\_)
What values does X take on?
0, 1, 2, 3, 4, …
For the given values of the random variable X, fill in the corresponding probabilities.
Is it likely that there will be no teens killed from motor vehicle injuries on any given day in the U.S? Justify your answer numerically.
No
Is it likely that there will be more than 20 teens killed from motor vehicle injuries on any given day in the U.S.? Justify your answer numerically.
The switchboard in a Minneapolis law office gets an average of 5.5 incoming phone calls during the noon hour on Mondays. Experience shows that the existing staff can handle up to six calls in an hour. Let X = the number of calls received at noon.
≈ 2.3452
The maternity ward at Dr. Jose Fabella Memorial Hospital in Manila in the Philippines is one of the busiest in the world with an average of 60 births per day. Let X = the number of births in an hour.
A manufacturer of Christmas tree light bulbs knows that 3% of its bulbs are defective. Find the probability that a string of 100 lights contains at most four defective bulbs using both the binomial and Poisson distributions.
Let X = the number of defective bulbs in a string.
Using the Poisson distribution:
Using the binomial distribution:
The Poisson approximation is very good—the difference between the probabilities is only 0.0026.
The average number of children a Japanese woman has in her lifetime is 1.37. Suppose that one Japanese woman is randomly chosen.
The average number of children a Spanish woman has in her lifetime is 1.47. Suppose that one Spanish woman is randomly chosen.
Fertile, female cats produce an average of three litters per year. Suppose that one fertile, female cat is randomly chosen. In one year, find the probability she produces:
The chance of having an extra fortune in a fortune cookie is about 3%. Given a bag of 144 fortune cookies, we are interested in the number of cookies with an extra fortune. Two distributions may be used to solve this problem, but only use one distribution to solve the problem.
According to the South Carolina Department of Mental Health web site, for every 200 U.S. women, the average number who suffer from anorexia is one. Out of a randomly chosen group of 600 U.S. women determine the following.
The chance of an IRS audit for a tax return with over $25,000 in income is about 2% per year. Suppose that 100 people with tax returns over $25,000 are randomly picked. We are interested in the number of people audited in one year. Use a Poisson distribution to anwer the following questions.
Approximately 8% of students at a local high school participate in after-school sports all four years of high school. A group of 60 seniors is randomly chosen. Of interest is the number that participated in after-school sports all four years of high school.
On average, Pierre, an amateur chef, drops three pieces of egg shell into every two cake batters he makes. Suppose that you buy one of his cakes.
Use the following information to answer the next two exercises: The average number of times per week that Mrs. Plum’s cats wake her up at night because they want to play is ten. We are interested in the number of times her cats wake her up each week.
In words, the random variable X = \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_
Find the probability that her cats will wake her up no more than five times next week.
d
The distribution is defined by the mean μ of the event in the interval. Notation: X ~ P(μ). The mean is μ = np. The standard deviation is
. The probability of having exactly x successes in r trials is P(X = x ) =
. The Poisson distribution is often used to approximate the binomial distribution, when n is “large” and p is “small” (a general rule is that n should be greater than or equal to 20 and p should be less than or equal to 0.05).
You can also download for free at http://cnx.org/contents/30189442-6998-4686-ac05-ed152b91b9de@21.1
Attribution: