A contingency table provides a way of portraying data that can facilitate calculating probabilities. The table helps in determining conditional probabilities quite easily. The table displays sample values in relation to two different variables that may be dependent or contingent on one another. Later on, we will use contingency tables again, but in another manner.
Suppose a study of speeding violations and drivers who use cell phones produced the following fictional data:
Speeding violation in the last year | No speeding violation in the last year | Total | |
---|---|---|---|
Uses cell phone while driving | 25 | 280 | 305 |
Does not use cell phone while driving | 45 | 405 | 450 |
Total | 70 | 685 | 755 |
The total number of people in the sample is 755. The row totals are 305 and 450. The column totals are 70 and 685. Notice that 305 + 450 = 755 and 70 + 685 = 755.
Calculate the following probabilities using the table.* * *
a. Find P(Driver is a cell phone user).* * *
b. Find P(driver had no violation in the last year).* * *
c. Find P(Driver had no violation in the last year AND was a cell phone user).* * *
d. Find P(Driver is a cell phone user OR driver had no violation in the last year).* * *
e. Find P(Driver is a cell phone user GIVEN driver had a violation in the last year).* * *
f. Find P(Driver had no violation last year GIVEN driver was not a cell phone user)
Solutions:a.
b.
c.
d.
e.
(The sample space is reduced to the number of drivers who had a violation.)* * *
f.
(The sample space is reduced to the number of drivers who were not cell phone users.)
[link] shows the number of athletes who stretch before exercising and how many had injuries within the past year.
Injury in last year | No injury in last year | Total | |
---|---|---|---|
Stretches | 55 | 295 | 350 |
Does not stretch | 231 | 219 | 450 |
Total | 286 | 514 | 800 |
[link] shows a random sample of 100 hikers and the areas of hiking they prefer.
Sex | The Coastline | Near Lakes and Streams | On Mountain Peaks | Total |
---|---|---|---|---|
Female | 18 | 16 | \_\_\_ | 45 |
Male | \_\_\_ | \_\_\_ | 14 | 55 |
Total | \_\_\_ | 41 | \_\_\_ | \_\_\_ |
a. Complete the table.
a.
Sex | The Coastline | Near Lakes and Streams | On Mountain Peaks | Total |
---|---|---|---|---|
Female | 18 | 16 | 11 | 45 |
Male | 16 | 25 | 14 | 55 |
Total | 34 | 41 | 25 | 100 |
b. Are the events “being female” and “preferring the coastline” independent events?
Let F = being female and let C = preferring the coastline.
Are these two numbers the same? If they are, then F and C are independent. If they are not, then F and C are not independent.
b.
= 0.18
= (0.45)(0.34) = 0.153
P(F AND C) ≠ P(F)P(C), so the events F and C are not independent.* * *
c. Find the probability that a person is male given that the person prefers hiking near lakes and streams. Let M = being male, and let L = prefers hiking near lakes and streams.
c.
d. Find the probability that a person is female or prefers hiking on mountain peaks. Let F = being female, and let P = prefers mountain peaks.
d.
+
-
=
[link] shows a random sample of 200 cyclists and the routes they prefer. Let M = males and H = hilly path.
Gender | Lake Path | Hilly Path | Wooded Path | Total |
---|---|---|---|---|
Female | 45 | 38 | 27 | 110 |
Male | 26 | 52 | 12 | 90 |
Total | 71 | 90 | 39 | 200 |
Muddy Mouse lives in a cage with three doors. If Muddy goes out the first door, the probability that he gets caught by Alissa the cat is
and the probability he is not caught is
. If he goes out the second door, the probability he gets caught by Alissa is
and the probability he is not caught is
. The probability that Alissa catches Muddy coming out of the third door is
and the probability she does not catch Muddy is
. It is equally likely that Muddy will choose any of the three doors so the probability of choosing each door is
.
Caught or Not | Door One | Door Two | Door Three | Total |
---|---|---|---|---|
Caught | \_\_\_\_ | |||
Not Caught | \_\_\_\_ | |||
Total | \_\_\_\_ | \_\_\_\_ | \_\_\_\_ | 1 |
is P(Door One AND Caught)
is P(Door One AND Not Caught)
Verify the remaining entries.* * *
a. Complete the probability contingency table. Calculate the entries for the totals. Verify that the lower-right corner entry is 1.
a.
Caught or Not | Door One | Door Two | Door Three | Total |
---|---|---|---|---|
Caught | ||||
Not Caught | ||||
Total | 1 |
b. What is the probability that Alissa does not catch Muddy?
b.
c. What is the probability that Muddy chooses Door One OR Door Two given that Muddy is caught by Alissa?
c.
[link] contains the number of crimes per 100,000 inhabitants from 2008 to 2011 in the U.S.
Year | Robbery | Burglary | Rape | Vehicle | Total |
---|---|---|---|---|---|
2008 | 145.7 | 732.1 | 29.7 | 314.7 | |
2009 | 133.1 | 717.7 | 29.1 | 259.2 | |
2010 | 119.3 | 701 | 27.7 | 239.1 | |
2011 | 113.7 | 702.2 | 26.8 | 229.6 | |
Total |
TOTAL each column and each row. Total data = 4,520.7
a. 0.0294, b. 0.1551, c. 0.7165, d. 0.2365, e. 0.2575
[link] relates the weights and heights of a group of individuals participating in an observational study.
Weight/Height | Tall | Medium | Short | Totals |
---|---|---|---|---|
Obese | 18 | 28 | 14 | |
Normal | 20 | 51 | 28 | |
Underweight | 12 | 25 | 9 | |
Totals |
“Blood Types.” American Red Cross, 2013. Available online at http://www.redcrossblood.org/learn-about-blood/blood-types (accessed May 3, 2013).
Data from the National Center for Health Statistics, part of the United States Department of Health and Human Services.
Data from United States Senate. Available online at www.senate.gov (accessed May 2, 2013).
Haiman, Christopher A., Daniel O. Stram, Lynn R. Wilkens, Malcom C. Pike, Laurence N. Kolonel, Brien E. Henderson, and Loīc Le Marchand. “Ethnic and Racial Differences in the Smoking-Related Risk of Lung Cancer.” The New England Journal of Medicine, 2013. Available online at http://www.nejm.org/doi/full/10.1056/NEJMoa033250 (accessed May 2, 2013).
“Human Blood Types.” Unite Blood Services, 2011. Available online at http://www.unitedbloodservices.org/learnMore.aspx (accessed May 2, 2013).
Samuel, T. M. “Strange Facts about RH Negative Blood.” eHow Health, 2013. Available online at http://www.ehow.com/facts\_5552003\_strange-rh-negative-blood.html (accessed May 2, 2013).
“United States: Uniform Crime Report – State Statistics from 1960–2011.” The Disaster Center. Available online at http://www.disastercenter.com/crime/ (accessed May 2, 2013).
There are several tools you can use to help organize and sort data when calculating probabilities. Contingency tables help display data and are particularly useful when calculating probabilites that have multiple dependent variables.
###
Use the following information to answer the next four exercises. [link] shows a random sample of musicians and how they learned to play their instruments.
Gender | Self-taught | Studied in School | Private Instruction | Total |
---|---|---|---|---|
Female | 12 | 38 | 22 | 72 |
Male | 19 | 24 | 15 | 58 |
Total | 31 | 62 | 37 | 130 |
Find P(musician is a female).
Find P(musician is a male AND had private instruction).
P(musician is a male AND had private instruction) =
=
= 0.12
Find P(musician is a female OR is self taught).
Are the events “being a female musician” and “learning music in school” mutually exclusive events?
P(being a female musician AND learning music in school) =
=
= 0.29
P(being a female musician)P(learning music in school) =
=
=
= 0.26
No, they are not independent because P(being a female musician AND learning music in school) is not equal to P(being a female musician)P(learning music in school).
Use the following information to answer the next seven exercises. An article in the New England Journal of Medicine, reported about a study of smokers in California and Hawaii. In one part of the report, the self-reported ethnicity and smoking levels per day were given. Of the people smoking at most ten cigarettes per day, there were 9,886 African Americans, 2,745 Native Hawaiians, 12,831 Latinos, 8,378 Japanese Americans, and 7,650 Whites. Of the people smoking 11 to 20 cigarettes per day, there were 6,514 African Americans, 3,062 Native Hawaiians, 4,932 Latinos, 10,680 Japanese Americans, and 9,877 Whites. Of the people smoking 21 to 30 cigarettes per day, there were 1,671 African Americans, 1,419 Native Hawaiians, 1,406 Latinos, 4,715 Japanese Americans, and 6,062 Whites. Of the people smoking at least 31 cigarettes per day, there were 759 African Americans, 788 Native Hawaiians, 800 Latinos, 2,305 Japanese Americans, and 3,970 Whites.
Complete the table using the data provided. Suppose that one person from the study is randomly selected. Find the probability that person smoked 11 to 20 cigarettes per day.
Smoking Level | African American | Native Hawaiian | Latino | Japanese Americans | White | TOTALS |
---|---|---|---|---|---|---|
1–10 | ||||||
11–20 | ||||||
21–30 | ||||||
31+ | ||||||
TOTALS |
Suppose that one person from the study is randomly selected. Find the probability that person smoked 11 to 20 cigarettes per day.
Find the probability that the person was Latino.
In words, explain what it means to pick one person from the study who is “Japanese American AND smokes 21 to 30 cigarettes per day.” Also, find the probability.
To pick one person from the study who is Japanese American AND smokes 21 to 30 cigarettes per day means that the person has to meet both criteria: both Japanese American and smokes 21 to 30 cigarettes. The sample space should include everyone in the study. The probability is
.
In words, explain what it means to pick one person from the study who is “Japanese American OR smokes 21 to 30 cigarettes per day.” Also, find the probability.
In words, explain what it means to pick one person from the study who is “Japanese American GIVEN that person smokes 21 to 30 cigarettes per day.” Also, find the probability.
To pick one person from the study who is Japanese American given that person smokes 21-30 cigarettes per day, means that the person must fulfill both criteria and the sample space is reduced to those who smoke 21-30 cigarettes per day. The probability is
.
Prove that smoking level/day and ethnicity are dependent events.
Use the information in the [link] to answer the next eight exercises. The table shows the political party affiliation of each of 67 members of the US Senate in June 2012, and when they are up for reelection.
Up for reelection: | Democratic Party | Republican Party | Other | Total |
---|---|---|---|---|
November 2014 | 20 | 13 | 0 | |
November 2016 | 10 | 24 | 0 | |
Total |
What is the probability that a randomly selected senator has an “Other” affiliation?
0
What is the probability that a randomly selected senator is up for reelection in November 2016?
What is the probability that a randomly selected senator is a Democrat and up for reelection in November 2016?
What is the probability that a randomly selected senator is a Republican or is up for reelection in November 2014?
Suppose that a member of the US Senate is randomly selected. Given that the randomly selected senator is up for reelection in November 2016, what is the probability that this senator is a Democrat?
Suppose that a member of the US Senate is randomly selected. What is the probability that the senator is up for reelection in November 2014, knowing that this senator is a Republican?
The events “Republican” and “Up for reelection in 2016” are ________
d
The events “Other” and “Up for reelection in November 2016” are ________
[link] gives the number of suicides estimated in the U.S. for a recent year by age, race (black or white), and sex. We are interested in possible relationships between age, race, and sex. We will let suicide victims be our population.
Race and Sex | 1–14 | 15–24 | 25–64 | over 64 | TOTALS |
---|---|---|---|---|---|
white, male | 210 | 3,360 | 13,610 | 22,050 | |
white, female | 80 | 580 | 3,380 | 4,930 | |
black, male | 10 | 460 | 1,060 | 1,670 | |
black, female | 0 | 40 | 270 | 330 | |
all others | |||||
TOTALS | 310 | 4,650 | 18,780 | 29,760 |
Do not include “all others” for parts f and g.
Race and Sex | 1–14 | 15–24 | 25–64 | over 64 | TOTALS |
---|---|---|---|---|---|
white, male | 210 | 3,360 | 13,610 | 4,870 | 22,050 |
white, female | 80 | 580 | 3,380 | 890 | 4,930 |
black, male | 10 | 460 | 1,060 | 140 | 1,670 |
black, female | 0 | 40 | 270 | 20 | 330 |
all others | 100 | ||||
TOTALS | 310 | 4,650 | 18,780 | 6,020 | 29,760 |
Race and Sex | 1–14 | 15–24 | 25–64 | over 64 | TOTALS |
---|---|---|---|---|---|
white, male | 210 | 3,360 | 13,610 | 4,870 | 22,050 |
white, female | 80 | 580 | 3,380 | 890 | 4,930 |
black, male | 10 | 460 | 1,060 | 140 | 1,670 |
black, female | 0 | 40 | 270 | 20 | 330 |
all others | 10 | 210 | 460 | 100 | 780 |
TOTALS | 310 | 4,650 | 18,780 | 6,020 | 29,760 |
Use the following information to answer the next two exercises. The table of data obtained from www.baseball-almanac.com shows hit information for four well known baseball players. Suppose that one hit from the table is randomly selected.
NAME | Single | Double | Triple | Home Run | TOTAL HITS |
---|---|---|---|---|---|
Babe Ruth | 1,517 | 506 | 136 | 714 | 2,873 |
Jackie Robinson | 1,054 | 273 | 54 | 137 | 1,518 |
Ty Cobb | 3,603 | 174 | 295 | 114 | 4,189 |
Hank Aaron | 2,294 | 624 | 98 | 755 | 3,771 |
TOTAL | 8,471 | 1,577 | 583 | 1,720 | 12,351 |
Find P(hit was made by Babe Ruth).
Find P(hit was made by Ty Cobb|The hit was a Home Run).
b
[link] identifies a group of children by one of four hair colors, and by type of hair.
Hair Type | Brown | Blond | Black | Red | Totals |
---|---|---|---|---|---|
Wavy | 20 | 15 | 3 | 43 | |
Straight | 80 | 15 | 12 | ||
Totals | 20 | 215 |
In a previous year, the weights of the members of the San Francisco 49ers and the Dallas Cowboys were published in the San Jose Mercury News. The factual data were compiled into the following table.
Shirt# | ≤ 210 | 211–250 | 251–290 | > 290 |
---|---|---|---|---|
1–33 | 21 | 5 | 0 | 0 |
34–66 | 6 | 18 | 7 | 4 |
66–99 | 6 | 12 | 22 | 5 |
For the following, suppose that you randomly select one player from the 49ers or Cowboys.
+
-
=
You can also download for free at http://cnx.org/contents/30189442-6998-4686-ac05-ed152b91b9de@21.1
Attribution: