Calculus of the Hyperbolic Functions

We were introduced to hyperbolic functions in Introduction to Functions and Graphs, along with some of their basic properties. In this section, we look at differentiation and integration formulas for the hyperbolic functions and their inverses.

Derivatives and Integrals of the Hyperbolic Functions

Recall that the hyperbolic sine and hyperbolic cosine are defined as

sinhx=exex2andcoshx=ex+ex2.

The other hyperbolic functions are then defined in terms of sinhx

and coshx.

The graphs of the hyperbolic functions are shown in the following figure.

This figure has six graphs. The first graph labeled “a” is of the function y=sinh(x). It is an increasing function from the 3rd quadrant, through the origin to the first quadrant. The second graph is labeled “b” and is of the function y=cosh(x). It decreases in the second quadrant to the intercept y=1, then becomes an increasing function. The third graph labeled “c” is of the function y=tanh(x). It is an increasing function from the third quadrant, through the origin, to the first quadrant. The fourth graph is labeled “d” and is of the function y=coth(x). It has two pieces, one in the third quadrant and one in the first quadrant with a vertical asymptote at the y-axis. The fifth graph is labeled “e” and is of the function y=sech(x). It is a curve above the x-axis, increasing in the second quadrant, to the y-axis at y=1 and then decreases. The sixth graph is labeled “f” and is of the function y=csch(x). It has two pieces, one in the third quadrant and one in the first quadrant with a vertical asymptote at the y-axis.

It is easy to develop differentiation formulas for the hyperbolic functions. For example, looking at sinhx

we have

ddx(sinhx)=ddx(exex2)=12[ddx(ex)ddx(ex)]=12[ex+ex]=coshx.

Similarly, (d/dx)coshx=sinhx.

We summarize the differentiation formulas for the hyperbolic functions in the following table.

Derivatives of the Hyperbolic Functions
f(x) ddxf(x)
sinhx coshx
coshx sinhx
tanhx sech2x
cothx csch2x
sechx sechxtanhx
cschx cschxcothx

Let’s take a moment to compare the derivatives of the hyperbolic functions with the derivatives of the standard trigonometric functions. There are a lot of similarities, but differences as well. For example, the derivatives of the sine functions match: (d/dx)sinx=cosx

and (d/dx)sinhx=coshx.

The derivatives of the cosine functions, however, differ in sign: (d/dx)cosx=sinx,

but (d/dx)coshx=sinhx.

As we continue our examination of the hyperbolic functions, we must be mindful of their similarities and differences to the standard trigonometric functions.

These differentiation formulas for the hyperbolic functions lead directly to the following integral formulas.

sinhudu=coshu+Ccsch2udu=cothu+Ccoshudu=sinhu+Csechutanhudu=sechu+Csech2udu=tanhu+Ccschucothudu=cschu+C
Differentiating Hyperbolic Functions

Evaluate the following derivatives:

  1. ddx(sinh(x2))
  2. ddx(coshx)2

Using the formulas in [link] and the chain rule, we get

  1. ddx(sinh(x2))=cosh(x2)·2x
  2. ddx(coshx)2=2coshxsinhx

Evaluate the following derivatives:

  1. ddx(tanh(x2+3x))
  2. ddx(1(sinhx)2)
  1. ddx(tanh(x2+3x))=(sech2(x2+3x))(2x+3)
  2. ddx(1(sinhx)2)=ddx(sinhx)−2=−2(sinhx)−3coshx
Hint

Use the formulas in [link] and apply the chain rule as necessary.

Integrals Involving Hyperbolic Functions

Evaluate the following integrals:

  1. xcosh(x2)dx
  2. tanhxdx

We can use u-substitution in both cases.

  1. Let u=x2.

    Then,

    du=2xdx

    and


    xcosh(x2)dx=12coshudu=12sinhu+C=12sinh(x2)+C.
  2. Let u=coshx.

    Then,

    du=sinhxdx

    and


    tanhxdx=sinhxcoshxdx=1udu=ln\|u\|+C=ln\|coshx\|+C.

    Note that

    coshx>0

    for all

    x,

    so we can eliminate the absolute value signs and obtain


    tanhxdx=ln(coshx)+C.

Evaluate the following integrals:

  1. sinh3xcoshxdx
  2. sech2(3x)dx
  1. sinh3xcoshxdx=sinh4x4+C
  2. sech2(3x)dx=tanh(3x)3+C
Hint

Use the formulas above and apply u-substitution as necessary.

Calculus of Inverse Hyperbolic Functions

Looking at the graphs of the hyperbolic functions, we see that with appropriate range restrictions, they all have inverses. Most of the necessary range restrictions can be discerned by close examination of the graphs. The domains and ranges of the inverse hyperbolic functions are summarized in the following table.

Domains and Ranges of the Inverse Hyperbolic Functions
Function Domain Range
sinh−1x (,) (,)
cosh−1x (1,) [0,)
tanh−1x (−1,1) (,)
coth−1x (,−1)(1,) (,0)(0,)
sech−1x (0, 1) [0,)
csch−1x (,0)(0,) (,0)(0,)

The graphs of the inverse hyperbolic functions are shown in the following figure.

This figure has six graphs. The first graph labeled “a” is of the function y=sinh^-1(x). It is an increasing function from the 3rd quadrant, through the origin to the first quadrant. The second graph is labeled “b” and is of the function y=cosh^-1(x). It is in the first quadrant, beginning on the x-axis at 2 and increasing. The third graph labeled “c” is of the function y=tanh^-1(x). It is an increasing function from the third quadrant, through the origin, to the first quadrant. The fourth graph is labeled “d” and is of the function y=coth^-1(x). It has two pieces, one in the third quadrant and one in the first quadrant with a vertical asymptote at the y-axis. The fifth graph is labeled “e” and is of the function y=sech^-1(x). It is a curve decreasing in the first quadrant and stopping on the x-axis at x=1. The sixth graph is labeled “f” and is of the function y=csch^-1(x). It has two pieces, one in the third quadrant and one in the first quadrant with a vertical asymptote at the y-axis.

To find the derivatives of the inverse functions, we use implicit differentiation. We have

y=sinh−1xsinhy=xddxsinhy=ddxxcoshydydx=1.

Recall that cosh2ysinh2y=1,

so coshy=1+sinh2y.

Then,

dydx=1coshy=11+sinh2y=11+x2.

We can derive differentiation formulas for the other inverse hyperbolic functions in a similar fashion. These differentiation formulas are summarized in the following table.

Derivatives of the Inverse Hyperbolic Functions
f(x) ddxf(x)
sinh−1x 11+x2
cosh−1x 1x21
tanh−1x 11x2
coth−1x 11x2
sech−1x −1x1x2
csch−1x −1\|x\|1+x2

Note that the derivatives of tanh−1x

and coth−1x

are the same. Thus, when we integrate 1/(1x2),

we need to select the proper antiderivative based on the domain of the functions and the values of x.

Integration formulas involving the inverse hyperbolic functions are summarized as follows.

11+u2du=sinh−1u+C1u1u2du=sech−1\|u\|+C1u21du=cosh−1u+C1u1+u2du=csch−1\|u\|+C11u2du={tanh−1u+Cif\|u\|<1coth−1u+Cif\|u\|>1
Differentiating Inverse Hyperbolic Functions

Evaluate the following derivatives:

  1. ddx(sinh−1(x3))
  2. ddx(tanh−1x)2

Using the formulas in [link] and the chain rule, we obtain the following results:

  1. ddx(sinh−1(x3))=131+x29=19+x2
  2. ddx(tanh−1x)2=2(tanh−1x)1x2

Evaluate the following derivatives:

  1. ddx(cosh−1(3x))
  2. ddx(coth−1x)3
  1. ddx(cosh−1(3x))=39x21
  2. ddx(coth−1x)3=3(coth−1x)21x2
Hint

Use the formulas in [link] and apply the chain rule as necessary.

Integrals Involving Inverse Hyperbolic Functions

Evaluate the following integrals:

  1. 14x21dx
  2. 12x19x2dx

We can use u-substitution

in both cases.

  1. Let u=2x.

    Then,

    du=2dx

    and we have


    14x21dx=12u21du=12cosh−1u+C=12cosh−1(2x)+C.
  2. Let u=3x.

    Then,

    du=3dx

    and we obtain


    12x19x2dx=121u1u2du=12sech−1\|u\|+C=12sech−1\|3x\|+C.

Evaluate the following integrals:

  1. 1x24dx,x>2
  2. 11e2xdx
  1. 1x24dx=cosh−1(x2)+C
  2. 11e2xdx=sech−1(ex)+C
Hint

Use the formulas above and apply u-substitution

as necessary.

Applications

One physical application of hyperbolic functions involves hanging cables. If a cable of uniform density is suspended between two supports without any load other than its own weight, the cable forms a curve called a catenary. High-voltage power lines, chains hanging between two posts, and strands of a spider’s web all form catenaries. The following figure shows chains hanging from a row of posts.

An image of chains hanging between posts that all take the shape of a catenary.

Hyperbolic functions can be used to model catenaries. Specifically, functions of the form y=acosh(x/a)

are catenaries. [link] shows the graph of y=2cosh(x/2).

This figure is a graph. It is of the function f(x)=2cosh(x/2). The curve decreases in the second quadrant to the y-axis. It intersects the y-axis at y=2. Then the curve becomes increasing.

Using a Catenary to Find the Length of a Cable

Assume a hanging cable has the shape 10cosh(x/10)

for −15x15,

where x

is measured in feet. Determine the length of the cable (in feet).

Recall from Section 6.4

that the formula for arc length is

Arc Length=ab1+[f(x)]2dx.

We have f(x)=10cosh(x/10),

so f(x)=sinh(x/10).

Then

Arc Length=ab1+[f(x)]2dx=−15151+sinh2(x10)dx.

Now recall that 1+sinh2x=cosh2x,

so we have

Arc Length=−15151+sinh2(x10)dx=−1515cosh(x10)dx=10sinh(x10)\|−1515=10[sinh(32)sinh(32)]=20sinh(32)42.586ft.

Assume a hanging cable has the shape 15cosh(x/15)

for −20x20.

Determine the length of the cable (in feet).

52.95ft
Hint

Use the procedure from the previous example.

Key Concepts

[T] Find expressions for coshx+sinhx

and coshxsinhx.

Use a calculator to graph these functions and ensure your expression is correct.

exandex

From the definitions of cosh(x)

and sinh(x),

find their antiderivatives.

Show that cosh(x)

and sinh(x)

satisfy y=y.

Answers may vary

Use the quotient rule to verify that tanh(x)=sech2(x).

Derive cosh2(x)+sinh2(x)=cosh(2x)

from the definition.

Answers may vary

Take the derivative of the previous expression to find an expression for sinh(2x).

Prove sinh(x+y)=sinh(x)cosh(y)+cosh(x)sinh(y)

by changing the expression to exponentials.

Answers may vary

Take the derivative of the previous expression to find an expression for cosh(x+y).

For the following exercises, find the derivatives of the given functions and graph along with the function to ensure your answer is correct.

[T] cosh(3x+1)

3sinh(3x+1)

[T] sinh(x2)

[T] 1cosh(x)

tanh(x)sech(x)

[T] sinh(ln(x))

[T] cosh2(x)+sinh2(x)

4cosh(x)sinh(x)

[T] cosh2(x)sinh2(x)

[T] tanh(x2+1)

xsech2(x2+1)x2+1

[T] 1+tanh(x)1tanh(x)

[T] sinh6(x)

6sinh5(x)cosh(x)

[T] ln(sech(x)+tanh(x))

For the following exercises, find the antiderivatives for the given functions.

cosh(2x+1)
12sinh(2x+1)+C
tanh(3x+2)
xcosh(x2)
12sinh2(x2)+C
3x3tanh(x4)
cosh2(x)sinh(x)
13cosh3(x)+C
tanh2(x)sech2(x)
sinh(x)1+cosh(x)
ln(1+cosh(x))+C
coth(x)
cosh(x)+sinh(x)
cosh(x)+sinh(x)+C
(cosh(x)+sinh(x))n

For the following exercises, find the derivatives for the functions.

tanh−1(4x)
4116x2
sinh−1(x2)
sinh−1(cosh(x))
sinh(x)cosh2(x)+1
cosh−1(x3)
tanh−1(cos(x))
csc(x)
esinh−1(x)
ln(tanh−1(x))
1(x21)tanh−1(x)

For the following exercises, find the antiderivatives for the functions.

dx4x2
dxa2x2
1atanh−1(xa)+C
dxx2+1
xdxx2+1
x2+1+C
dxx1x2
exe2x1
cosh−1(ex)+C
2xx41

For the following exercises, use the fact that a falling body with friction equal to velocity squared obeys the equation dv/dt=gv2.

Show that v(t)=gtanh(gt)

satisfies this equation.

Answers may vary

Derive the previous expression for v(t)

by integrating dvgv2=dt.

[T] Estimate how far a body has fallen in 12

seconds by finding the area underneath the curve of v(t).

37.30

For the following exercises, use this scenario: A cable hanging under its own weight has a slope S=dy/dx

that satisfies dS/dx=c1+S2.

The constant c

is the ratio of cable density to tension.

Show that S=sinh(cx)

satisfies this equation.

Integrate dy/dx=sinh(cx)

to find the cable height y(x)

if y(0)=1/c.

y=1ccosh(cx)

Sketch the cable and determine how far down it sags at x=0.

For the following exercises, solve each problem.

[T] A chain hangs from two posts 2

m apart to form a catenary described by the equation y=2cosh(x/2)1.

Find the slope of the catenary at the left fence post.

−0.521095

[T] A chain hangs from two posts four meters apart to form a catenary described by the equation y=4cosh(x/4)3.

Find the total length of the catenary (arc length).

[T] A high-voltage power line is a catenary described by y=10cosh(x/10).

Find the ratio of the area under the catenary to its arc length. What do you notice?

10

A telephone line is a catenary described by y=acosh(x/a).

Find the ratio of the area under the catenary to its arc length. Does this confirm your answer for the previous question?

Prove the formula for the derivative of y=sinh−1(x)

by differentiating x=sinh(y).

(Hint: Use hyperbolic trigonometric identities.)

Prove the formula for the derivative of y=cosh−1(x)

by differentiating x=cosh(y).

(Hint: Use hyperbolic trigonometric identities.)

Prove the formula for the derivative of y=sech−1(x)

by differentiating x=sech(y).

(Hint: Use hyperbolic trigonometric identities.)

Prove that (cosh(x)+sinh(x))n=cosh(nx)+sinh(nx).

Prove the expression for sinh−1(x).

Multiply x=sinh(y)=(1/2)(eyey)

by 2ey

and solve for y.

Does your expression match the textbook?

Prove the expression for cosh−1(x).

Multiply x=cosh(y)=(1/2)(eyey)

by 2ey

and solve for y.

Does your expression match the textbook?

Chapter Review Exercises

True or False? Justify your answer with a proof or a counterexample.

The amount of work to pump the water out of a half-full cylinder is half the amount of work to pump the water out of the full cylinder.

False

If the force is constant, the amount of work to move an object from x=a

to x=b

is F(ba).

The disk method can be used in any situation in which the washer method is successful at finding the volume of a solid of revolution.

False

If the half-life of seaborgium-266

is 360

ms, then k=(ln(2))/360.

For the following exercises, use the requested method to determine the volume of the solid.

The volume that has a base of the ellipse x2/4+y2/9=1

and cross-sections of an equilateral triangle perpendicular to the y-axis.

Use the method of slicing.

323
y=x2x,

from x=1tox=4,

rotated around they-axis using the washer method

x=y2

and x=3y

rotated around the y-axis using the washer method

162π5
x=2y2y3,x=0,andy=0

rotated around the x-axis using cylindrical shells

For the following exercises, find

  1. the area of the region,
  2. the volume of the solid when rotated around the x-axis, and
  3. the volume of the solid when rotated around the y-axis. Use whichever method seems most appropriate to you.
y=x3,x=0,y=0,andx=2

a. 4,

b. 128π7,

c. 64π5

y=x2xandx=0

[T] y=ln(x)+2andy=x

a. 1.949,

b. 21.952,

c. 17.099

y=x2

and y=x

y=5+x, y=x2, x=0,

and x=1

a. 316,

b. 452π15,

c. 31π6

Below x2+y2=1

and above y=1x

Find the mass of ρ=ex

on a disk centered at the origin with radius 4.

245.282

Find the center of mass for ρ=tan2x

on x(π4,π4).

Find the mass and the center of mass of ρ=1

on the region bounded by y=x5

and y=x.

Mass: 12,

center of mass: (1835,911)

For the following exercises, find the requested arc lengths.

The length of x

for y=cosh(x)

from x=0tox=2.

The length of y

for x=3y

from y=0

to y=4

17+18ln(33+817)

For the following exercises, find the surface area and volume when the given curves are revolved around the specified axis.

The shape created by revolving the region between y=4+x,

y=3x, x=0,

and x=2

rotated around the y-axis.

The loudspeaker created by revolving y=1/x

from x=1

to x=4

around the x-axis.

Volume: 3π4,

surface area: π(2sinh−1(1)+sinh−1(16)25716)

For the following exercises, consider the Karun-3 dam in Iran. Its shape can be approximated as an isosceles triangle with height 205

m and width 388

m. Assume the current depth of the water is 180

m. The density of water is 1000

kg/m 3.

Find the total force on the wall of the dam.

You are a crime scene investigator attempting to determine the time of death of a victim. It is noon and 45°F

outside and the temperature of the body is 78°F.

You know the cooling constant is k=0.00824°F/min.

When did the victim die, assuming that a human’s temperature is 98°F

?

11:02 a.m.

For the following exercise, consider the stock market crash in 1929

in the United States. The table lists the Dow Jones industrial average per year leading up to the crash.

Source: http://stockcharts.com/freecharts/historical/djia19201940.html
Years after 1920 Value ($)
1 63.90
3 100
5 110
7 160
9 381.17

[T] The best-fit exponential curve to these data is given by y=40.71+1.224x.

Why do you think the gains of the market were unsustainable? Use first and second derivatives to help justify your answer. What would this model predict the Dow Jones industrial average to be in 2014

?

For the following exercises, consider the catenoid, the only solid of revolution that has a minimal surface, or zero mean curvature. A catenoid in nature can be found when stretching soap between two rings.

Find the volume of the catenoid y=cosh(x)

from x=−1tox=1

that is created by rotating this curve around the x-axis,

as shown here.

This figure is an image of a catenoid. It has been formed by rotating a catenary curve about a vertical axis.

π(1+sinh(1)cosh(1))

Find surface area of the catenoid y=cosh(x)

from x=−1

to x=1

that is created by rotating this curve around the x-axis.

Glossary

catenary
a curve in the shape of the function y=acosh(x/a)

is a catenary; a cable of uniform density suspended between two supports assumes the shape of a catenary


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

You can also download for free at http://cnx.org/contents/9a1df55a-b167-4736-b5ad-15d996704270@5.1

Attribution: