Substitution

The Fundamental Theorem of Calculus gave us a method to evaluate integrals without using Riemann sums. The drawback of this method, though, is that we must be able to find an antiderivative, and this is not always easy. In this section we examine a technique, called integration by substitution, to help us find antiderivatives. Specifically, this method helps us find antiderivatives when the integrand is the result of a chain-rule derivative.

At first, the approach to the substitution procedure may not appear very obvious. However, it is primarily a visual task—that is, the integrand shows you what to do; it is a matter of recognizing the form of the function. So, what are we supposed to see? We are looking for an integrand of the form f[g(x)]g(x)dx.

For example, in the integral (x23)32xdx,

we have f(x)=x3,g(x)=x23,

and g'(x)=2x.

Then,

f[g(x)]g(x)=(x23)3(2x),

and we see that our integrand is in the correct form.

The method is called substitution because we substitute part of the integrand with the variable u and part of the integrand with du. It is also referred to as change of variables because we are changing variables to obtain an expression that is easier to work with for applying the integration rules.

Substitution with Indefinite Integrals

Let u=g(x),,

where g(x)

is continuous over an interval, let f(x)

be continuous over the corresponding range of g, and let F(x)

be an antiderivative of f(x).

Then,

f[g(x)]g(x)dx=f(u)du=F(u)+C=F(g(x))+C.

Proof

Let f, g, u, and F be as specified in the theorem. Then

ddxF(g(x))=F(g(x))g(x)=f[g(x)]g(x).

Integrating both sides with respect to x, we see that

f[g(x)]g(x)dx=F(g(x))+C.

If we now substitute u=g(x),

and du=g'(x)dx,

we get

f[g(x)]g(x)dx=f(u)du=F(u)+C=F(g(x))+C.

Returning to the problem we looked at originally, we let u=x23

and then du=2xdx.

Rewrite the integral in terms of u:

(x23)u3(2xdx)du=u3du.

Using the power rule for integrals, we have

u3du=u44+C.

Substitute the original expression for x back into the solution:

u44+C=(x23)44+C.

We can generalize the procedure in the following Problem-Solving Strategy.

Problem-Solving Strategy: Integration by Substitution
  1. Look carefully at the integrand and select an expression g(x)

    within the integrand to set equal to u. Let’s select

    g(x).

    such that

    g(x)

    is also part of the integrand.

  2. Substitute u=g(x)

    and

    du=g(x)dx.

    into the integral.

  3. We should now be able to evaluate the integral with respect to u. If the integral can’t be evaluated we need to go back and select a different expression to use as u.
  4. Evaluate the integral in terms of u.
  5. Write the result in terms of x and the expression g(x).
Using Substitution to Find an Antiderivative

Use substitution to find the antiderivative of 6x(3x2+4)4dx.

The first step is to choose an expression for u. We choose u=3x2+4.

because then du=6xdx.,

and we already have du in the integrand. Write the integral in terms of u:

6x(3x2+4)4dx=u4du.

Remember that du is the derivative of the expression chosen for u, regardless of what is inside the integrand. Now we can evaluate the integral with respect to u:

u4du=u55+C=(3x2+4)55+C.

Analysis

We can check our answer by taking the derivative of the result of integration. We should obtain the integrand. Picking a value for C of 1, we let y=15(3x2+4)5+1.

We have

y=15(3x2+4)5+1,

so

y=(15)5(3x2+4)46x=6x(3x2+4)4.

This is exactly the expression we started with inside the integrand.

Use substitution to find the antiderivative of 3x2(x33)2dx.

3x2(x33)2dx=13(x33)3+C
Hint

Let u=x33.

Sometimes we need to adjust the constants in our integral if they don’t match up exactly with the expressions we are substituting.

Using Substitution with Alteration

Use substitution to find the antiderivative of zz25dz.

Rewrite the integral as z(z25)1/2dz.

Let u=z25

and du=2zdz.

Now we have a problem because du=2zdz

and the original expression has only zdz.

We have to alter our expression for du or the integral in u will be twice as large as it should be. If we multiply both sides of the du equation by 12.

we can solve this problem. Thus,

u=z25du=2zdz12du=12(2z)dz=zdz.

Write the integral in terms of u, but pull the 12

outside the integration symbol:

z(z25)1/2dz=12u1/2du.

Integrate the expression in u:

12u1/2du=(12)u3/232+C=(12)(23)u3/2+C=13u3/2+C=13(z25)3/2+C.

Use substitution to find the antiderivative of x2(x3+5)9dx.

(x3+5)1030+C
Hint

Multiply the du equation by 13.

Using Substitution with Integrals of Trigonometric Functions

Use substitution to evaluate the integral sintcos3tdt.

We know the derivative of cost

is sint,

so we set u=cost.

Then du=sintdt.

Substituting into the integral, we have

sintcos3tdt=duu3.

Evaluating the integral, we get

duu3=u−3du=(12)u−2+C.

Putting the answer back in terms of t, we get

sintcos3tdt=12u2+C=12cos2t+C.

Use substitution to evaluate the integral costsin2tdt.

1sint+C
Hint

Use the process from [link] to solve the problem.

Sometimes we need to manipulate an integral in ways that are more complicated than just multiplying or dividing by a constant. We need to eliminate all the expressions within the integrand that are in terms of the original variable. When we are done, u should be the only variable in the integrand. In some cases, this means solving for the original variable in terms of u. This technique should become clear in the next example.

Finding an Antiderivative Using *u*-Substitution

Use substitution to find the antiderivative of xx1dx.

If we let u=x1,

then du=dx.

But this does not account for the x in the numerator of the integrand. We need to express x in terms of u. If u=x1,

then x=u+1.

Now we can rewrite the integral in terms of u:

xx1dx=u+1udu=u+1udu=(u1/2+u−1/2)du.

Then we integrate in the usual way, replace u with the original expression, and factor and simplify the result. Thus,

(u1/2+u−1/2)du=23u3/2+2u1/2+C=23(x1)3/2+2(x1)1/2+C=(x1)1/2[23(x1)+2]+C=(x1)1/2(23x23+63)=(x1)1/2(23x+43)=23(x1)1/2(x+2)+C.

Use substitution to evaluate the indefinite integral cos3tsintdt.

cos4t4+C
Hint

Use the process from [link] to solve the problem.

Substitution for Definite Integrals

Substitution can be used with definite integrals, too. However, using substitution to evaluate a definite integral requires a change to the limits of integration. If we change variables in the integrand, the limits of integration change as well.

Substitution with Definite Integrals

Let u=g(x)

and let g

be continuous over an interval [a,b],

and let f be continuous over the range of u=g(x).

Then,

abf(g(x))g(x)dx=g(a)g(b)f(u)du.

Although we will not formally prove this theorem, we justify it with some calculations here. From the substitution rule for indefinite integrals, if F(x)

is an antiderivative of f(x),

we have

f(g(x))g(x)dx=F(g(x))+C.

Then

abf[g(x)]g(x)dx=F(g(x))\|x=ax=b=F(g(b))F(g(a))=F(u)\|u=g(a)u=g(b)=g(a)g(b)f(u)du,

and we have the desired result.

Using Substitution to Evaluate a Definite Integral

Use substitution to evaluate 01x2(1+2x3)5dx.

Let u=1+2x3,

so du=6x2dx.

Since the original function includes one factor of x2 and du=6x2dx,

multiply both sides of the du equation by 1/6.

Then,

du=6x2dx16du=x2dx.

To adjust the limits of integration, note that when x=0,u=1+2(0)=1,

and when x=1,u=1+2(1)=3.

Then

01x2(1+2x3)5dx=1613u5du.

Evaluating this expression, we get

1613u5du=(16)(u66)\|13=136[(3)6(1)6]=1829.

Use substitution to evaluate the definite integral −10y(2y23)5dy.

913
Hint

Use the steps from [link] to solve the problem.

Using Substitution with an Exponential Function

Use substitution to evaluate 01xe4x2+3dx.

Let u=4x3+3.

Then, du=8xdx.

To adjust the limits of integration, we note that when x=0,u=3,

and when x=1,u=7.

So our substitution gives

01xe4x2+3dx=1837eudu=18eu\|37=e7e38134.568.

Use substitution to evaluate 01x2cos(π2x3)dx.

23π0.2122
Hint

Use the process from [link] to solve the problem.

Substitution may be only one of the techniques needed to evaluate a definite integral. All of the properties and rules of integration apply independently, and trigonometric functions may need to be rewritten using a trigonometric identity before we can apply substitution. Also, we have the option of replacing the original expression for u after we find the antiderivative, which means that we do not have to change the limits of integration. These two approaches are shown in [link].

Using Substitution to Evaluate a Trigonometric Integral

Use substitution to evaluate 0π/2cos2θdθ.

Let us first use a trigonometric identity to rewrite the integral. The trig identity cos2θ=1+cos2θ2

allows us to rewrite the integral as

0π/2cos2θdθ=0π/21+cos2θ2dθ.

Then,

0π/2(1+cos2θ2)dθ=0π/2(12+12cos2θ)dθ=120π/2dθ+0π/2cos2θdθ.

We can evaluate the first integral as it is, but we need to make a substitution to evaluate the second integral. Let u=2θ.

Then, du=2dθ,

or 12du=dθ.

Also, when θ=0,u=0,

and when θ=π/2,u=π.

Expressing the second integral in terms of u, we have

120π/2dθ+120π/2cos2θdθ=120π/2dθ+12(12)0πcosudu=θ2\|θ=0θ=π/2+14sinu\|u=0u=θ=(π40)+(00)=π4.

Key Concepts

Key Equations

Why is u-substitution referred to as change of variable?

2. If f=gh,

when reversing the chain rule, ddx(gh)(x)=g(h(x))h(x),

should you take u=g(x)

or u=h(x)?

u=h(x)

In the following exercises, verify each identity using differentiation. Then, using the indicated u-substitution, identify f such that the integral takes the form f(u)du.

xx+1dx=215(x+1)3/2(3x2)+C;u=x+1
x2x1dx(x>1)=215x1(3x2+4x+8)+C;u=x1
f(u)=(u+1)2u
x4x2+9dx=112(4x2+9)3/2+C;u=4x2+9
x4x2+9dx=144x2+9+C;u=4x2+9
du=8xdx;f(u)=18u
x(4x2+9)2dx=18(4x2+9);u=4x2+9

In the following exercises, find the antiderivative using the indicated substitution.

(x+1)4dx;u=x+1
15(x+1)5+C
(x1)5dx;u=x1
(2x3)−7dx;u=2x3
112(32x)6+C
(3x2)−11dx;u=3x2
xx2+1dx;u=x2+1
x2+1+C
x1x2dx;u=1x2
(x1)(x22x)3dx;u=x22x
18(x22x)4+C
(x22x)(x33x2)2dx;u=x3=3x2
cos3θdθ;u=sinθ (Hint:cos2θ=1sin2θ)
sinθsin3θ3+C
sin3θdθ;u=cosθ (Hint:sin2θ=1cos2θ)

In the following exercises, use a suitable change of variables to determine the indefinite integral.

x(1x)99dx
(1x)101101(1x)100100+C
t(1t2)10dt
(11x7)−3dx
122(711x2)+C
(7x11)4dx
cos3θsinθdθ
cos4θ4+C
sin7θcosθdθ
cos2(πt)sin(πt)dt
cos3(πt)3π+C
sin2xcos3xdx (Hint:sin2x+cos2x=1)
tsin(t2)cos(t2)dt
14cos2(t2)+C
t2cos2(t3)sin(t3)dt
x2(x33)2dx
13(x33)+C
x31x2dx
y5(1y3)3/2dy
2(y32)31y3
cosθ(1cosθ)99sinθdθ
(1cos3θ)10cos2θsinθdθ
133(1cos3θ)11+C
(cosθ1)(cos2θ2cosθ)3sinθdθ
(sin2θ2sinθ)(sin3θ3sin2θ)3cosθdθ
112(sin3θ3sin2θ)4+C

In the following exercises, use a calculator to estimate the area under the curve using left Riemann sums with 50 terms, then use substitution to solve for the exact answer.

[T] y=3(1x)2

over [0,2]

[T] y=x(1x2)3

over [−1,2]

L50=−8.5779.

The exact area is −818

[T] y=sinx(1cosx)2

over [0,π]

[T] y=x(x2+1)2

over [−1,1]

L50=−0.006399

… The exact area is 0.

In the following exercises, use a change of variables to evaluate the definite integral.

01x1x2dx
01x1+x2dx
u=1+x2,du=2xdx,1212u−1/2du=21
02t5+t2dt
01t21+t3dt
u=1+t3,du=3t2,1312u−1/2du=23(21)
0π/4sec2θtanθdθ
0π/4sinθcos4θdθ
u=cosθ,du=sinθdθ,1/21u−4du=13(221)

In the following exercises, evaluate the indefinite integral f(x)dx

with constant C=0

using u-substitution. Then, graph the function and the antiderivative over the indicated interval. If possible, estimate a value of C that would need to be added to the antiderivative to make it equal to the definite integral F(x)=axf(t)dt,

with a the left endpoint of the given interval.

[T] (2x+1)ex2+x6dx

over [−3,2]

[T] cos(ln(2x))xdx

on [0,2]


Two graphs. The first shows the function f(x) = cos(ln(2x)) / x, which increases sharply over the approximate interval (0,.25) and then decreases gradually to the x axis. The second shows the function f(x) = sin(ln(2x)), which decreases sharply on the approximate interval (0, .25) and then increases in a gently curve into the first quadrant.


The antiderivative is y=sin(ln(2x)).

Since the antiderivative is not continuous at x=0,

one cannot find a value of C that would make y=sin(ln(2x))C

work as a definite integral.

[T] 3x2+2x+1x3+x2+x+4dx

over [−1,2]

[T] sinxcos3xdx

over [π3,π3]


Two graphs. The first is the function f(x) = sin(x) / cos(x)^3 over [-5pi/16, 5pi/16]. It is an increasing concave down function for values less than zero and an increasing concave up function for values greater than zero. The second is the fuction f(x) = ½ sec(x)^2 over the same interval. It is a wide, concave up curve which decreases for values less than zero and increases for values greater than zero.


The antiderivative is y=12sec2x.

You should take C=−2

so that F(π3)=0.

[T] (x+2)ex24x+3dx

over [−5,1]

[T] 3x22x3+1dx

over [0,1]


Two graphs. The first shows the function f(x) = 3x^2 * sqrt(2x^3 + 1). It is an increasing concave up curve starting at the origin. The second shows the function f(x) = 1/3 * (2x^3 + 1)^(1/3). It is an increasing concave up curve starting at about 0.3.


The antiderivative is y=13(2x3+1)3/2.

One should take C=13.

If h(a)=h(b)

in abg'(h(x))h(x)dx,

what can you say about the value of the integral?

Is the substitution u=1x2

in the definite integral 02x1x2dx

okay? If not, why not?

No, because the integrand is discontinuous at x=1.

In the following exercises, use a change of variables to show that each definite integral is equal to zero.

0πcos2(2θ)sin(2θ)dθ
0πtcos(t2)sin(t2)dt
u=sin(t2);

the integral becomes 1200udu.

01(12t)dt
0112t(1+(t12)2)dt
u=(1+(t12)2);

the integral becomes 5/45/41udu.

0πsin((tπ2)3)cos(tπ2)dt
02(1t)cos(πt)dt
u=1t;

the integral becomes* * *

1−1ucos(π(1u))du=1−1u[cosπcosusinπsinu]du=1−1ucosudu=−11ucosudu=0

since the integrand is odd.

π/43π/4sin2tcostdt

Show that the average value of f(x)

over an interval [a,b]

is the same as the average value of f(cx)

over the interval [ac,bc]

for c>0.

Setting u=cx

and du=cdx

gets you 1bcaca/cb/cf(cx)dx=cbau=au=bf(u)duc=1baabf(u)du.

Find the area under the graph of f(t)=t(1+t2)a

between t=0

and t=x

where a>0

and a1

is fixed, and evaluate the limit as x.

Find the area under the graph of g(t)=t(1t2)a

between t=0

and t=x,

where 0<x<1

and a>0

is fixed. Evaluate the limit as x1.

0xg(t)dt=12u=1x21duua=12(1a)u1a\|u=1x21=12(1a)(1(1x2)1a).

As x1

the limit is 12(1a)

if a<1,

and the limit diverges to +∞ if a>1.

The area of a semicircle of radius 1 can be expressed as −111x2dx.

Use the substitution x=cost

to express the area of a semicircle as the integral of a trigonometric function. You do not need to compute the integral.

The area of the top half of an ellipse with a major axis that is the x-axis from x=−1

to a and with a minor axis that is the y-axis from y=b

to b can be written as aab1x2a2dx.

Use the substitution x=acost

to express this area in terms of an integral of a trigonometric function. You do not need to compute the integral.

t=π0b1cos2t×(asint)dt=t=0πabsin2tdt

[T] The following graph is of a function of the form f(t)=asin(nt)+bsin(mt).

Estimate the coefficients a and b, and the frequency parameters n and m. Use these estimates to approximate 0πf(t)dt.

A graph of a function of the given form over [0, 2pi], which has six turning points. They are located at just before pi/4, just after pi/2, between 3pi/4 and pi, between pi and 5pi/4, just before 3pi/2, and just after 7pi/4 at about 3, -2, 1, -1, 2, and -3. It begins at the origin and ends at (2pi, 0). It crosses the x axis between pi/4 and pi/2, just before 3pi/4, pi, just after 5pi/4, and between 3pi/2 and 4pi/4.

[T] The following graph is of a function of the form f(x)=acos(nt)+bcos(mt).

Estimate the coefficients a and b and the frequency parameters n and m. Use these estimates to approximate 0πf(t)dt.

The graph of a function of the given form over [0, 2pi]. It begins at (0,1) and ends at (2pi, 1). It has five turning points, located just after pi/4, between pi/2 and 3pi/4, pi, between 5pi/4 and 3pi/2, and just before 7pi/4 at about -1.5, 2.5, -3, 2.5, and -1. It crosses the x axis between 0 and pi/4, just before pi/2, just after 3pi/4, just before 5pi/4, just after 3pi/2, and between 7pi/4 and 2pi.

f(t)=2cos(3t)cos(2t);0π/2(2cos(3t)cos(2t))=23

Glossary

change of variables
the substitution of a variable, such as u, for an expression in the integrand
integration by substitution
a technique for integration that allows integration of functions that are the result of a chain-rule derivative

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

You can also download for free at http://cnx.org/contents/9a1df55a-b167-4736-b5ad-15d996704270@5.1

Attribution: