Limits at Infinity and Asymptotes

We have shown how to use the first and second derivatives of a function to describe the shape of a graph. To graph a function f

defined on an unbounded domain, we also need to know the behavior of f

as x±.

In this section, we define limits at infinity and show how these limits affect the graph of a function. At the end of this section, we outline a strategy for graphing an arbitrary function f.

Limits at Infinity

We begin by examining what it means for a function to have a finite limit at infinity. Then we study the idea of a function with an infinite limit at infinity. Back in Introduction to Functions and Graphs, we looked at vertical asymptotes; in this section we deal with horizontal and oblique asymptotes.

Limits at Infinity and Horizontal Asymptotes

Recall that limxaf(x)=L

means f(x)

becomes arbitrarily close to L

as long as x

is sufficiently close to a.

We can extend this idea to limits at infinity. For example, consider the function f(x)=2+1x.

As can be seen graphically in [link] and numerically in [link], as the values of x

get larger, the values of f(x)

approach 2.

We say the limit as x

approaches

of f(x)

is 2

and write limxf(x)=2.

Similarly, for x<0,

as the values \|x\|

get larger, the values of f(x)

approaches 2.

We say the limit as x

approaches

of f(x)

is 2

and write limxaf(x)=2.

The function f(x) 2 + 1/x is graphed. The function starts negative near y = 2 but then decreases to −∞ near x = 0. The function then decreases from ∞ near x = 0 and gets nearer to y = 2 as x increases. There is a horizontal line denoting the asymptote y = 2.

Values of a function f as x±
x 10 100 1,000 10,000
2+1x 2.1 2.01 2.001 2.0001
x −10 −100 −1000 −10,000
2+1x 1.9 1.99 1.999 1.9999

More generally, for any function f,

we say the limit as x

of f(x)

is L

if f(x)

becomes arbitrarily close to L

as long as x

is sufficiently large. In that case, we write limxf(x)=L.

Similarly, we say the limit as x

of f(x)

is L

if f(x)

becomes arbitrarily close to L

as long as x<0

and \|x\|

is sufficiently large. In that case, we write limxf(x)=L.

We now look at the definition of a function having a limit at infinity.

Definition

(Informal) If the values of f(x)

become arbitrarily close to L

as x

becomes sufficiently large, we say the function f

has a limit at infinity and write

limxf(x)=L.

If the values of f(x)

becomes arbitrarily close to L

for x<0

as \|x\|

becomes sufficiently large, we say that the function f

has a limit at negative infinity and write

limx–∞f(x)=L.

If the values f(x)

are getting arbitrarily close to some finite value L

as x

or x,

the graph of f

approaches the line y=L.

In that case, the line y=L

is a horizontal asymptote of f

([link]). For example, for the function f(x)=1x,

since limxf(x)=0,

the line y=0

is a horizontal asymptote of f(x)=1x.

Definition

If limxf(x)=L

or limxf(x)=L,

we say the line y=L

is a horizontal asymptote of f.

The figure is broken up into two figures labeled a and b. Figure a shows a function f(x) approaching but never touching a horizontal dashed line labeled L from above. Figure b shows a function f(x) approaching but never a horizontal dashed line labeled M from below.

A function cannot cross a vertical asymptote because the graph must approach infinity (or )

from at least one direction as x

approaches the vertical asymptote. However, a function may cross a horizontal asymptote. In fact, a function may cross a horizontal asymptote an unlimited number of times. For example, the function f(x)=(cosx)x+1

shown in [link] intersects the horizontal asymptote y=1

an infinite number of times as it oscillates around the asymptote with ever-decreasing amplitude.

The function f(x) = (cos x)/x + 1 is shown. It decreases from (0, ∞) and then proceeds to oscillate around y = 1 with decreasing amplitude.

The algebraic limit laws and squeeze theorem we introduced in Introduction to Limits also apply to limits at infinity. We illustrate how to use these laws to compute several limits at infinity.

Computing Limits at Infinity

For each of the following functions f,

evaluate limxf(x)

and limxf(x).

Determine the horizontal asymptote(s) for f.

  1. f(x)=52x2
  2. f(x)=sinxx
  3. f(x)=tan−1(x)
  1. Using the algebraic limit laws, we have limx(52x2)=limx52(limx1x).(limx1x)=52·0=5.

    Similarly,

    limx-f(x)=5.

    Therefore,

    f(x)=52x2

    has a horizontal asymptote of

    y=5

    and

    f

    approaches this horizontal asymptote as

    x±

    as shown in the following graph.


    The function f(x) = 5 – 2/x2 is graphed. The function approaches the horizontal asymptote y = 5 as x approaches ±∞.

  2. Since −1sinx1

    for all

    x,

    we have


    −1xsinxx1x

    for all

    x0.

    Also, since


    limx−1x=0=limx1x,

    we can apply the squeeze theorem to conclude that


    limxsinxx=0.

    Similarly,


    limxsinxx=0.

    Thus,

    f(x)=sinxx

    has a horizontal asymptote of

    y=0

    and

    f(x)

    approaches this horizontal asymptote as

    x±

    as shown in the following graph.


    The function f(x) = (sin x)/x is shown. It has a global maximum at (0, 1) and then proceeds to oscillate around y = 0 with decreasing amplitude.

  3. To evaluate limxtan−1(x)

    and

    limxtan−1(x),

    we first consider the graph of

    y=tan(x)

    over the interval

    (π/2,π/2)

    as shown in the following graph.


    The function f(x) = tan x is shown. It increases from (−π/2, −∞), passes through the origin, and then increases toward (π/2, ∞). There are vertical dashed lines marking x = ±π/2.

Since

limx(π/2)tanx=,

it follows that

limxtan−1(x)=π2.

Similarly, since

limx(π/2)+tanx=,

it follows that

limxtan−1(x)=π2.

As a result, y=π2

and y=π2

are horizontal asymptotes of f(x)=tan−1(x)

as shown in the following graph.

The function f(x) = tan−1 x is shown. It increases from (−∞, −π/2), passes through the origin, and then increases toward (∞, π/2). There are horizontal dashed lines marking y = ±π/2.

Evaluate limx(3+4x)

and limx(3+4x).

Determine the horizontal asymptotes of f(x)=3+4x,

if any.

Both limits are 3.

The line y=3

is a horizontal asymptote.

Hint
limx±1/x=0

Infinite Limits at Infinity

Sometimes the values of a function f

become arbitrarily large as x

(or as x).

In this case, we write limxf(x)=

(or limxf(x)=).

On the other hand, if the values of f

are negative but become arbitrarily large in magnitude as x

(or as x),

we write limxf(x)=

(or limxf(x)=).

For example, consider the function f(x)=x3.

As seen in [link] and [link], as x

the values f(x)

become arbitrarily large. Therefore, limxx3=.

On the other hand, as x,

the values of f(x)=x3

are negative but become arbitrarily large in magnitude. Consequently, limxx3=.

Values of a power function as x±
x 10 20 50 100 1000
x3 1000 8000 125,000 1,000,000 1,000,000,000
x −10 −20 −50 −100 −1000
x3 −1000 −8000 −125,000 −1,000,000 −1,000,000,000

The function f(x) = x3 is graphed. It is apparent that this function rapidly approaches infinity as x approaches infinity.

Definition

(Informal) We say a function f

has an infinite limit at infinity and write

limxf(x)=.

if f(x)

becomes arbitrarily large for x

sufficiently large. We say a function has a negative infinite limit at infinity and write

limxf(x)=.

if f(x)<0

and \|f(x)\|

becomes arbitrarily large for x

sufficiently large. Similarly, we can define infinite limits as x.

Formal Definitions

Earlier, we used the terms arbitrarily close, arbitrarily large, and sufficiently large to define limits at infinity informally. Although these terms provide accurate descriptions of limits at infinity, they are not precise mathematically. Here are more formal definitions of limits at infinity. We then look at how to use these definitions to prove results involving limits at infinity.

Definition

(Formal) We say a function f

has a limit at infinity, if there exists a real number L

such that for all ε>0,

there exists N>0

such that

\|f(x)L\|<ε

for all x>N.

In that case, we write

limxf(x)=L

(see [link]).

We say a function f

has a limit at negative infinity if there exists a real number L

such that for all ε>0,

there exists N<0

such that

\|f(x)L\|<ε

for all x<N.

In that case, we write

limxf(x)=L.
![The function f(x) is graphed, and it has a horizontal asymptote at L. L is marked on the y axis, as is L + ॉ and L – ॉ. On the x axis, N is marked as the value of x such that f(x) = L + ॉ.](../resources/CNX_Calc_Figure_04_06_023.jpg “For a function with a limit at infinity, for all x>N, f(x)−L <ε.”){: #CNX_Calc_Figure_04_06_009}

Earlier in this section, we used graphical evidence in [link] and numerical evidence in [link] to conclude that limx(2+1x)=2.

Here we use the formal definition of limit at infinity to prove this result rigorously.

A Finite Limit at Infinity Example

Use the formal definition of limit at infinity to prove that limx(2+1x)=2.

Let ε>0.

Let N=1ε.

Therefore, for all x>N,

we have

\|2+1x2\|=\|1x\|=1x<1N=ε.

Use the formal definition of limit at infinity to prove that limx(31x2)=3.

Let ε>0.

Let N=1ε.

Therefore, for all x>N,

we have

\|31x23\|=1x2<1N2=ε

Therefore, limx(31/x2)=3.

Hint

Let N=1ε.

We now turn our attention to a more precise definition for an infinite limit at infinity.

Definition

(Formal) We say a function f

has an infinite limit at infinity and write

limxf(x)=

if for all M>0,

there exists an N>0

such that

f(x)>M

for all x>N

(see [link]).

We say a function has a negative infinite limit at infinity and write

limxf(x)=

if for all M<0,

there exists an N>0

such that

f(x)<M

for all x>N.

Similarly we can define limits as x.

The function f(x) is graphed. It continues to increase rapidly after x = N, and f(N) = M.

Earlier, we used graphical evidence ([link]) and numerical evidence ([link]) to conclude that limxx3=.

Here we use the formal definition of infinite limit at infinity to prove that result.

An Infinite Limit at Infinity

Use the formal definition of infinite limit at infinity to prove that limxx3=.

Let M>0.

Let N=M3.

Then, for all x>N,

we have

x3>N3=(M3)3=M.

Therefore, limxx3=.

Use the formal definition of infinite limit at infinity to prove that limx3x2=.

Let M>0.

Let N=M3.

Then, for all x>N,

we have

3x2>3N2=3(M3)22=3M3=M
Hint

Let N=M3.

End Behavior

The behavior of a function as x±

is called the function’s end behavior. At each of the function’s ends, the function could exhibit one of the following types of behavior:

  1. The function f(x)

    approaches a horizontal asymptote

    y=L.
  2. The function f(x)

    or

    f(x).
  3. The function does not approach a finite limit, nor does it approach

    or

    .

    In this case, the function may have some oscillatory behavior.

Let’s consider several classes of functions here and look at the different types of end behaviors for these functions.

End Behavior for Polynomial Functions

Consider the power function f(x)=xn

where n

is a positive integer. From [link] and [link], we see that

limxxn=;n=1,2,3,…

and

limxxn={;n=2,4,6,…;n=1,3,5,….

The functions x2, x4, and x6 are graphed, and it is apparent that as the exponent grows the functions increase more quickly.

The functions x, x3, and x5 are graphed, and it is apparent that as the exponent grows the functions increase more quickly.

Using these facts, it is not difficult to evaluate limxcxn

and limxcxn,

where c

is any constant and n

is a positive integer. If c>0,

the graph of y=cxn

is a vertical stretch or compression of y=xn,

and therefore

limxcxn=limxxnandlimxcxn=limxxnifc>0.

If c<0,

the graph of y=cxn

is a vertical stretch or compression combined with a reflection about the x

-axis, and therefore

limxcxn=limxxnandlimxcxn=limxxnifc<0.

If c=0,y=cxn=0,

in which case limxcxn=0=limxcxn.

Limits at Infinity for Power Functions

For each function f,

evaluate limxf(x)

and limxf(x).

  1. f(x)=−5x3
  2. f(x)=2x4
  1. Since the coefficient of x3

    is

    −5,

    the graph of

    f(x)=−5x3

    involves a vertical stretch and reflection of the graph of

    y=x3

    about the

    x

    -axis. Therefore,

    limx(−5x3)=

    and

    limx(−5x3)=.
  2. Since the coefficient of x4

    is

    2,

    the graph of

    f(x)=2x4

    is a vertical stretch of the graph of

    y=x4.

    Therefore,

    limx2x4=

    and

    limx2x4=.

Let f(x)=−3x4.

Find limxf(x).

Hint

The coefficient −3

is negative.

We now look at how the limits at infinity for power functions can be used to determine limx±f(x)

for any polynomial function f.

Consider a polynomial function

f(x)=anxn+an1xn1++a1x+a0

of degree n1

so that an0.

Factoring, we see that

f(x)=anxn(1+an1an1x++a1an1xn1+a0an1xn).

As x±,

all the terms inside the parentheses approach zero except the first term. We conclude that

limx±f(x)=limx±anxn.

For example, the function f(x)=5x33x2+4

behaves like g(x)=5x3

as x±

as shown in [link] and [link].

Both functions f(x) = 5x3 – 3x2 + 4 and g(x) = 5x3 are plotted. Their behavior for large positive and large negative numbers converges.

A polynomial’s end behavior is determined by the term with the largest exponent.
x 10 100 1000
f(x)=5x33x2+4 4704 4,970,004 4,997,000,004
g(x)=5x3 5000 5,000,000 5,000,000,000
x −10 −100 −1000
f(x)=5x33x2+4 −5296 −5,029,996 −5,002,999,996
g(x)=5x3 −5000 −5,000,000 −5,000,000,000

End Behavior for Algebraic Functions

The end behavior for rational functions and functions involving radicals is a little more complicated than for polynomials. In [link], we show that the limits at infinity of a rational function f(x)=p(x)q(x)

depend on the relationship between the degree of the numerator and the degree of the denominator. To evaluate the limits at infinity for a rational function, we divide the numerator and denominator by the highest power of x

appearing in the denominator. This determines which term in the overall expression dominates the behavior of the function at large values of x.

Determining End Behavior for Rational Functions

For each of the following functions, determine the limits as x

and x.

Then, use this information to describe the end behavior of the function.

  1. f(x)=3x12x+5

    (Note: The degree of the numerator and the denominator are the same.)

  2. f(x)=3x2+2x4x35x+7

    (Note: The degree of numerator is less than the degree of the denominator.)

  3. f(x)=3x2+4xx+2

    (Note: The degree of numerator is greater than the degree of the denominator.)

  1. The highest power of x

    in the denominator is

    x.

    Therefore, dividing the numerator and denominator by

    x

    and applying the algebraic limit laws, we see that


    limx±3x12x+5=limx±31/x2+5/x=limx±(31/x)limx±(2+5/x)=limx±3limx±1/xlimx±2+limx±5/x=302+0=32.

    Since

    limx±f(x)=32,

    we know that

    y=32

    is a horizontal asymptote for this function as shown in the following graph.


    The function f(x) = (3x + 1)/(2x + 5) is plotted as is its horizontal asymptote at y = 3/2.

  2. Since the largest power of x

    appearing in the denominator is

    x3,

    divide the numerator and denominator by

    x3.

    After doing so and applying algebraic limit laws, we obtain


    limx±3x2+2x4x35x+7=limx±3/x+2/x245/x2+7/x3=3(0)+2(0)45(0)+7(0)=0.

    Therefore

    f

    has a horizontal asymptote of

    y=0

    as shown in the following graph.


    The function f(x) = (3x2 + 2x)/(4x2 – 5x + 7) is plotted as is its horizontal asymptote at y = 0.

  3. Dividing the numerator and denominator by x,

    we have


    limx±3x2+4xx+2=limx±3x+41+2/x.

    As

    x±,

    the denominator approaches

    1.

    As

    x,

    the numerator approaches

    +.

    As

    x,

    the numerator approaches

    .

    Therefore

    limxf(x)=,

    whereas

    limxf(x)=

    as shown in the following figure.


    The function f(x) = (3x2 + 4x)/(x + 2) is plotted. It appears to have a diagonal asymptote as well as a vertical asymptote at x = −2.

Evaluate limx±3x2+2x15x24x+7

and use these limits to determine the end behavior of f(x)=3x2+2x15x24x+7.

35
Hint

Divide the numerator and denominator by x2.

Before proceeding, consider the graph of f(x)=(3x2+4x)(x+2)

shown in [link]. As x

and x,

the graph of f

appears almost linear. Although f

is certainly not a linear function, we now investigate why the graph of f

seems to be approaching a linear function. First, using long division of polynomials, we can write

f(x)=3x2+4xx+2=3x2+4x+2.

Since 4(x+2)0

as x±,

we conclude that

limx±(f(x)(3x2))=limx±4x+2=0.

Therefore, the graph of f

approaches the line y=3x2

as x±.

This line is known as an oblique asymptote for f

([link]).

The function f(x) = (3x2 + 4x)/(x + 2) is plotted as is its diagonal asymptote y = 3x – 2.

We can summarize the results of [link] to make the following conclusion regarding end behavior for rational functions. Consider a rational function

f(x)=p(x)q(x)=anxn+an1xn1++a1x+a0bmxm+bm1xm1++b1x+b0,

where an0andbm0.

  1. If the degree of the numerator is the same as the degree of the denominator (n=m),

    then

    f

    has a horizontal asymptote of

    y=an/bm

    as

    x±.
  2. If the degree of the numerator is less than the degree of the denominator (n<m),

    then

    f

    has a horizontal asymptote of

    y=0

    as

    x±.
  3. If the degree of the numerator is greater than the degree of the denominator (n>m),

    then

    f

    does not have a horizontal asymptote. The limits at infinity are either positive or negative infinity, depending on the signs of the leading terms. In addition, using long division, the function can be rewritten as


    f(x)=p(x)q(x)=g(x)+r(x)q(x),

    where the degree of

    r(x)

    is less than the degree of

    q(x).

    As a result,

    limx±r(x)/q(x)=0.

    Therefore, the values of

    [f(x)g(x)]

    approach zero as

    x±.

    If the degree of

    p(x)

    is exactly one more than the degree of

    q(x) (n=m+1),

    the function

    g(x)

    is a linear function. In this case, we call

    g(x)

    an oblique asymptote.


    Now let’s consider the end behavior for functions involving a radical.

Determining End Behavior for a Function Involving a Radical

Find the limits as x

and x

for f(x)=3x24x2+5

and describe the end behavior of f.

Let’s use the same strategy as we did for rational functions: divide the numerator and denominator by a power of x.

To determine the appropriate power of x,

consider the expression 4x2+5

in the denominator. Since

4x2+54x2=2\|x\|

for large values of x

in effect x

appears just to the first power in the denominator. Therefore, we divide the numerator and denominator by \|x\|.

Then, using the fact that \|x\|=x

for x>0,

\|x\|=x

for x<0,

and \|x\|=x2

for all x,

we calculate the limits as follows:

limx3x24x2+5=limx(1/\|x\|)(3x2)(1/\|x\|)4x2+5=limx(1/x)(3x2)(1/x2)(4x2+5)=limx32/x4+5/x2=34=32limx3x24x2+5=limx(1/\|x\|)(3x2)(1/\|x\|)4x2+5=limx(−1/x)(3x2)(1/x2)(4x2+5)=limx−3+2/x4+5/x2=−34=−32.

Therefore, f(x)

approaches the horizontal asymptote y=32

as x

and the horizontal asymptote y=32

as x

as shown in the following graph.

The function f(x) = (3x − 2)/(the square root of the quantity (4x2 + 5)) is plotted. It has two horizontal asymptotes at y = ±3/2, and it crosses y = −3/2 before converging toward it from below.

Evaluate limx3x2+4x+6.

±3
Hint

Divide the numerator and denominator by \|x\|.

Determining End Behavior for Transcendental Functions

The six basic trigonometric functions are periodic and do not approach a finite limit as x±.

For example, sinx

oscillates between 1and−1

([link]). The tangent function x

has an infinite number of vertical asymptotes as x±;

therefore, it does not approach a finite limit nor does it approach ±

as x±

as shown in [link].

The function f(x) = sin x is graphed.

The function f(x) = tan x is graphed.

Recall that for any base b>0,b1,

the function y=bx

is an exponential function with domain (,)

and range (0,).

If b>1,y=bx

is increasing over `(,).

If 0<b<1,

y=bx

is decreasing over (,).

For the natural exponential function f(x)=ex,

e2.718>1.

Therefore, f(x)=ex

is increasing on `(,)

and the range is `(0,).

The exponential function f(x)=ex

approaches

as x

and approaches 0

as x

as shown in [link] and [link].

End behavior of the natural exponential function
x −5 −2 0 2 5
ex 0.00674 0.135 1 7.389 148.413

The function f(x) = ex is graphed.

Recall that the natural logarithm function f(x)=ln(x)

is the inverse of the natural exponential function y=ex.

Therefore, the domain of f(x)=ln(x)

is (0,)

and the range is (,).

The graph of f(x)=ln(x)

is the reflection of the graph of y=ex

about the line y=x.

Therefore, ln(x)

as x0+

and ln(x)

as x

as shown in [link] and [link].

End behavior of the natural logarithm function
x 0.01 0.1 1 10 100
ln(x) −4.605 −2.303 0 2.303 4.605

The function f(x) = ln(x) is graphed.

Determining End Behavior for a Transcendental Function

Find the limits as x

and x

for f(x)=(2+3ex)(75ex)

and describe the end behavior of f.

To find the limit as x,

divide the numerator and denominator by ex:

limxf(x)=limx2+3ex75ex=limx(2/ex)+3(7/ex)5.

As shown in [link], ex

as x.

Therefore,

limx2ex=0=limx7ex.

We conclude that limxf(x)=35,

and the graph of f

approaches the horizontal asymptote y=35

as x.

To find the limit as x,

use the fact that ex0

as x

to conclude that limxf(x)=27,

and therefore the graph of approaches the horizontal asymptote y=27

as x.

Find the limits as x

and x

for f(x)=(3ex4)(5ex+2).

limxf(x)=35, limxf(x)=−2
Hint
limxex=

and limxex=0.

Guidelines for Drawing the Graph of a Function

We now have enough analytical tools to draw graphs of a wide variety of algebraic and transcendental functions. Before showing how to graph specific functions, let’s look at a general strategy to use when graphing any function.

Problem-Solving Strategy: Drawing the Graph of a Function

Given a function f,

use the following steps to sketch a graph of f:

  1. Determine the domain of the function.
  2. Locate the x

    - and

    y

    -intercepts.

  3. Evaluate limxf(x)

    and

    limxf(x)

    to determine the end behavior. If either of these limits is a finite number

    L,

    then

    y=L

    is a horizontal asymptote. If either of these limits is

    or

    ,

    determine whether

    f

    has an oblique asymptote. If

    f

    is a rational function such that

    f(x)=p(x)q(x),

    where the degree of the numerator is greater than the degree of the denominator, then

    f

    can be written as


    f(x)=p(x)q(x)=g(x)+r(x)q(x),

    where the degree of

    r(x)

    is less than the degree of

    q(x).

    The values of

    f(x)

    approach the values of

    g(x)

    as

    x±.

    If

    g(x)

    is a linear function, it is known as an oblique asymptote.

  4. Determine whether f

    has any vertical asymptotes.

  5. Calculate f.

    Find all critical points and determine the intervals where

    f

    is increasing and where

    f

    is decreasing. Determine whether

    f

    has any local extrema.

  6. Calculate f.

    Determine the intervals where

    f

    is concave up and where

    f

    is concave down. Use this information to determine whether

    f

    has any inflection points. The second derivative can also be used as an alternate means to determine or verify that

    f

    has a local extremum at a critical point.

Now let’s use this strategy to graph several different functions. We start by graphing a polynomial function.

Sketching a Graph of a Polynomial

Sketch a graph of f(x)=(x1)2(x+2).

Step 1. Since f

is a polynomial, the domain is the set of all real numbers.

Step 2. When x=0,f(x)=2.

Therefore, the y

-intercept is (0,2).

To find the x

-intercepts, we need to solve the equation (x1)2(x+2)=0,

gives us the x

-intercepts (1,0)

and (−2,0)

Step 3. We need to evaluate the end behavior of f.

As x,

(x1)2

and (x+2).

Therefore, limxf(x)=.

As x,

(x1)2

and (x+2).

Therefore, limxf(x)=.

To get even more information about the end behavior of f,

we can multiply the factors of f.

When doing so, we see that

f(x)=(x1)2(x+2)=x33x+2.

Since the leading term of f

is x3,

we conclude that f

behaves like y=x3

as x±.

Step 4. Since f

is a polynomial function, it does not have any vertical asymptotes.

Step 5. The first derivative of f

is

f(x)=3x23.

Therefore, f

has two critical points: x=1,−1.

Divide the interval (,)

into the three smaller intervals: (,−1),

(−1,1),

and (1,).

Then, choose test points x=−2,

x=0,

and x=2

from these intervals and evaluate the sign of f(x)

at each of these test points, as shown in the following table.

Interval Test Point Sign of Derivative f(x)=3x23=3(x1)(x+1)
Conclusion  
{: valign=”top”} ———-
(,−1)  
x=−2
(+)()()=+
f
is increasing.  
{: valign=”top”} (−1,1)
x=0
(+)()(+)=
f
is decreasing.  
{: valign=”top”} (1,)
x=2
(+)(+)(+)=+
f

is increasing. | {: valign=”top”}{: .unnumbered summary=”This table has four rows and four columns. The first row is a header row, and it reads Interval, Test Point, Sign of Derivative f’(x) = 3x2 – 3 = 3(x – 1)(x + 1), and Conclusion. Under the header row, the first column reads (−∞, −1), (−1, 1), and (1, ∞). The second column reads x = −2, x = 0, and x = 2. The third column reads (+)(−)(−) = +, (+)(−)(+) = −, and (+)(+)(+) = +. The fourth column reads f is increasing, f is decreasing, and f is increasing.” data-label=””}

From the table, we see that f

has a local maximum at x=−1

and a local minimum at x=1.

Evaluating f(x)

at those two points, we find that the local maximum value is f(−1)=4

and the local minimum value is f(1)=0.

Step 6. The second derivative of f

is

f(x)=6x.

The second derivative is zero at x=0.

Therefore, to determine the concavity of f,

divide the interval (,)

into the smaller intervals (,0)

and (0,),

and choose test points x=−1

and x=1

to determine the concavity of f

on each of these smaller intervals as shown in the following table.

Interval Test Point Sign of f(x)=6x
Conclusion  
{: valign=”top”} ———-
(,0)  
x=−1
f
is concave down.  
{: valign=”top”} (0,)
x=1
+
f

is concave up. | {: valign=”top”}{: .unnumbered summary=”This table has three rows and four columns. The first row is a header row, and it reads Interval, Test Point, Sign of f’’(x) = 6x, and Conclusion. Under the header row, the first column reads (−∞, 0) and (0, ∞). The second column reads x = −1 and x = 1. The third column reads − and +. The fourth column reads f is concave down and f is concave up.” data-label=””}

We note that the information in the preceding table confirms the fact, found in step 5,

that f

has a local maximum at x=−1

and a local minimum at x=1.

In addition, the information found in step 5

—namely, f

has a local maximum at x=−1

and a local minimum at x=1,

and f(x)=0

at those points—combined with the fact that f

changes sign only at x=0

confirms the results found in step 6

on the concavity of f.

Combining this information, we arrive at the graph of f(x)=(x1)2(x+2)

shown in the following graph.

The function f(x) = (x −1)2 (x + 2) is graphed. It crosses the x axis at x = −2 and touches the x axis at x = 1.

Sketch a graph of f(x)=(x1)3(x+2).


The function f(x) = (x −1)3(x + 2) is graphed.

Hint
f

is a fourth-degree polynomial.

Sketching a Rational Function

Sketch the graph of f(x)=x2(1x2).

Step 1. The function f

is defined as long as the denominator is not zero. Therefore, the domain is the set of all real numbers x

except x=±1.

Step 2. Find the intercepts. If x=0,

then f(x)=0,

so 0

is an intercept. If y=0,

then x2(1x2)=0,

which implies x=0.

Therefore, (0,0)

is the only intercept.

Step 3. Evaluate the limits at infinity. Since f

is a rational function, divide the numerator and denominator by the highest power in the denominator: x2.

We obtain

limx±x21x2=limx±11x21=−1.

Therefore, f

has a horizontal asymptote of y=−1

as x

and x.

Step 4. To determine whether f

has any vertical asymptotes, first check to see whether the denominator has any zeroes. We find the denominator is zero when x=±1.

To determine whether the lines x=1

or x=−1

are vertical asymptotes of f,

evaluate limx1f(x)

and limx1f(x).

By looking at each one-sided limit as x1,

we see that

limx1+x21x2=andlimx1x21x2=.

In addition, by looking at each one-sided limit as x1,

we find that

limx1+x21x2=andlimx1x21x2=.

Step 5. Calculate the first derivative:

f(x)=(1x2)(2x)x2(−2x)(1x2)2=2x(1x2)2.

Critical points occur at points x

where f(x)=0

or f(x)

is undefined. We see that f(x)=0

when x=0.

The derivative f

is not undefined at any point in the domain of f.

However, x=±1

are not in the domain of f.

Therefore, to determine where f

is increasing and where f

is decreasing, divide the interval (,)

into four smaller intervals: (,−1),

(−1,0), (0,1),

and (1,),

and choose a test point in each interval to determine the sign of f(x)

in each of these intervals. The values x=−2,

x=12, x=12,

and x=2

are good choices for test points as shown in the following table.

Interval Test Point Sign of f(x)=2x(1x2)2
Conclusion  
{: valign=”top”} ———-
(,−1)  
x=−2
/+=
f
is decreasing.  
{: valign=”top”} (−1,0)
x=−1/2
/+=
f
is decreasing.  
{: valign=”top”} (0,1)
x=1/2
+/+=+
f
is increasing.  
{: valign=”top”} (1,)
x=2
+/+=+
f

is increasing. | {: valign=”top”}{: .unnumbered summary=”This table has four columns and five rows. The first row is a header row, and it reads Interval, Test Point, Sign of f’(x) = 2x/(1 − x2)2, and Conclusion. Under the header row, the first column reads (−∞, −1), (−1, 0), (0, 1), and (1, ∞). The second column reads x = −2, x = −1/2, x = 1/2, and x = 2. The third column reads −/+ = −, −/+ = −, +/+ = +, and +/+ = +. The fourth column reads f is decreasing, f is decreasing, f is increasing, and f is increasing.” data-label=””}

From this analysis, we conclude that f

has a local minimum at x=0

but no local maximum.

Step 6. Calculate the second derivative:

f(x)=(1x2)2(2)2x(2(1x2)(−2x))(1x2)4=(1x2)[2(1x2)+8x2](1x2)4=2(1x2)+8x2(1x2)3=6x2+2(1x2)3.

To determine the intervals where f

is concave up and where f

is concave down, we first need to find all points x

where f(x)=0

or f(x)

is undefined. Since the numerator 6x2+20

for any x,

f(x)

is never zero. Furthermore, f

is not undefined for any x

in the domain of f.

However, as discussed earlier, x=±1

are not in the domain of f.

Therefore, to determine the concavity of f,

we divide the interval (,)

into the three smaller intervals (,−1),

(−1,−1),

and (1,),

and choose a test point in each of these intervals to evaluate the sign of f(x).

in each of these intervals. The values x=−2,

x=0,

and x=2

are possible test points as shown in the following table.

Interval Test Point Sign of f(x)=6x2+2(1x2)3
Conclusion  
{: valign=”top”} ———-
(,−1)  
x=−2
+/=
f
is concave down.  
{: valign=”top”} (−1,−1)
x=0
+/+=+
f
is concave up.  
{: valign=”top”} (1,)
x=2
+/=
f

is concave down. | {: valign=”top”}{: .unnumbered summary=”This table has four columns and four rows. The first row is a header row, and it reads Interval, Test Point, Sign of f’’(x) = (6x2 + 2)/(1 − x2)3, and Conclusion. Under the header row, the first column reads (−∞, −1), (−1, 1), and (1, ∞). The second column reads x = −2, x = 0, and x = 2. The third column reads +/− = −, +/+ = +, and +/− = −. The fourth column reads f is concave down, f is concave up, and f is concave down.” data-label=””}

Combining all this information, we arrive at the graph of f

shown below. Note that, although f

changes concavity at x=−1

and x=1,

there are no inflection points at either of these places because f

is not continuous at x=−1

or x=1.

The function f(x) = x2/(1 − x2) is graphed. It has asymptotes y = −1, x = −1, and x = 1.

Sketch a graph of f(x)=(3x+5)(8+4x).


The function f(x) = (3x + 5)/(8 + 4x) is graphed. It appears to have asymptotes at x = −2 and y = 1.

Hint

A line y=L

is a horizontal asymptote of f

if the limit as x

or the limit as x

of f(x)

is L.

A line x=a

is a vertical asymptote if at least one of the one-sided limits of f

as xa

is

or .

Sketching a Rational Function with an Oblique Asymptote

Sketch the graph of f(x)=x2(x1)

Step 1. The domain of f

is the set of all real numbers x

except x=1.

Step 2. Find the intercepts. We can see that when x=0,

f(x)=0,

so (0,0)

is the only intercept.

Step 3. Evaluate the limits at infinity. Since the degree of the numerator is one more than the degree of the denominator, f

must have an oblique asymptote. To find the oblique asymptote, use long division of polynomials to write

f(x)=x2x1=x+1+1x1.

Since 1/(x1)0

as x±,

f(x)

approaches the line y=x+1

as x±.

The line y=x+1

is an oblique asymptote for f.

Step 4. To check for vertical asymptotes, look at where the denominator is zero. Here the denominator is zero at x=1.

Looking at both one-sided limits as x1,

we find

limx1+x2x1=andlimx1x2x1=.

Therefore, x=1

is a vertical asymptote, and we have determined the behavior of f

as x

approaches 1

from the right and the left.

Step 5. Calculate the first derivative:

f(x)=(x1)(2x)x2(1)(x1)2=x22x(x1)2.

We have f(x)=0

when x22x=x(x2)=0.

Therefore, x=0

and x=2

are critical points. Since f

is undefined at x=1,

we need to divide the interval (,)

into the smaller intervals (,0),

(0,1), (1,2),

and (2,),

and choose a test point from each interval to evaluate the sign of f(x)

in each of these smaller intervals. For example, let x=−1,

x=12, x=32,

and x=3

be the test points as shown in the following table.

Interval Test Point Sign of f(x)=x22x(x1)2=x(x2)(x1)2
Conclusion  
{: valign=”top”} ———-
(,0)  
x=−1
()()/+=+
f
is increasing.  
{: valign=”top”} (0,1)
x=1/2
(+)()/+=
f
is decreasing.  
{: valign=”top”} (1,2)
x=3/2
(+)()/+=
f
is decreasing.  
{: valign=”top”} (2,)
x=3
(+)(+)/+=+
f

is increasing. | {: valign=”top”}{: .unnumbered summary=”This table has four columns and five rows. The first row is a header row, and it reads Interval, Test Point, Sign of f’(x) = (x2 − 2x)/(x − 1)2 = x(x − 2)/(x − 1)2, and Conclusion. Under the header row, the first column reads (−∞, 0), (0, 1), (1, 2), and (2, ∞). The second column reads x = −1, x = 1/2, x = 3/2, and x = 3. The third column reads (−)(−)/+ = +, (+)(−)/+ = −, (+)(−)/+ = −, and (+)(+)/+ = +. The fourth column reads f is increasing, f is decreasing, f is decreasing, and f is increasing.” data-label=””}

From this table, we see that f

has a local maximum at x=0

and a local minimum at x=2.

The value of f

at the local maximum is f(0)=0

and the value of f

at the local minimum is f(2)=4.

Therefore, (0,0)

and (2,4)

are important points on the graph.

Step 6. Calculate the second derivative:

f(x)=(x1)2(2x2)(x22x)(2(x1))(x1)4=(x1)[(x1)(2x2)2(x22x)](x1)4=(x1)(2x2)2(x22x)(x1)3=2x24x+2(2x24x)(x1)3=2(x1)3.

We see that f(x)

is never zero or undefined for x

in the domain of f.

Since f

is undefined at x=1,

to check concavity we just divide the interval (,)

into the two smaller intervals (,1)

and (1,),

and choose a test point from each interval to evaluate the sign of f(x)

in each of these intervals. The values x=0

and x=2

are possible test points as shown in the following table.

Interval Test Point Sign of f(x)=2(x1)3
Conclusion  
{: valign=”top”} ———-
(,1)  
x=0
+/=
f
is concave down.  
{: valign=”top”} (1,)
x=2
+/+=+
f

is concave up. | {: valign=”top”}{: .unnumbered summary=”This table has four columns and three rows. The first row is a header row, and it reads Interval, Test Point, Sign of f’’(x) = 2/(x − 1)3, and Conclusion. Under the header row, the first column reads (−∞, 1) and (1, ∞). The column row reads x = 0 and x = 2. The third column reads +/− = − and +/+ = +. The fourth column reads f is concave down and f is concave up.” data-label=””}

From the information gathered, we arrive at the following graph for f.

The function f(x) = x2/(x − 1) is graphed. It has asymptotes y = x + 1 and x = 1.

Find the oblique asymptote for f(x)=(3x32x+1)(2x24).

y=32x
Hint

Use long division of polynomials.

Sketching the Graph of a Function with a Cusp

Sketch a graph of f(x)=(x1)2/3.

Step 1. Since the cube-root function is defined for all real numbers x

and (x1)2/3=(x13)2,

the domain of f

is all real numbers.

Step 2: To find the y

-intercept, evaluate f(0).

Since f(0)=1,

the y

-intercept is (0,1).

To find the x

-intercept, solve (x1)2/3=0.

The solution of this equation is x=1,

so the x

-intercept is (1,0).

Step 3: Since limx±(x1)2/3=,

the function continues to grow without bound as x

and x.

Step 4: The function has no vertical asymptotes.

Step 5: To determine where f

is increasing or decreasing, calculate f.

We find

f(x)=23(x1)−1/3=23(x1)1/3.

This function is not zero anywhere, but it is undefined when x=1.

Therefore, the only critical point is x=1.

Divide the interval (,)

into the smaller intervals (,1)

and (1,),

and choose test points in each of these intervals to determine the sign of f(x)

in each of these smaller intervals. Let x=0

and x=2

be the test points as shown in the following table.

Interval Test Point Sign of f(x)=23(x1)1/3
Conclusion  
{: valign=”top”} ———-
(,1)  
x=0
+/=
f
is decreasing.  
{: valign=”top”} (1,)
x=2
+/+=+
f

is increasing. | {: valign=”top”}{: .unnumbered summary=”This table has four columns and three rows. The first row is a header row, and it reads Interval, Test Point, Sign of f’(x) = 2/(3(x − 1)1/3), and Conclusion. Under the header row, the first column reads (−∞, 1) and (1, ∞). The second column reads x = 0 and x = 2. The third column reads +/− = − and +/+ = +. The fourth column reads f is decreasing and f is increasing.” data-label=””}

We conclude that f

has a local minimum at x=1.

Evaluating f

at x=1,

we find that the value of f

at the local minimum is zero. Note that f(1)

is undefined, so to determine the behavior of the function at this critical point, we need to examine limx1f(x).

Looking at the one-sided limits, we have

limx1+23(x1)1/3=andlimx123(x1)1/3=.

Therefore, f

has a cusp at x=1.

Step 6: To determine concavity, we calculate the second derivative of f:

f(x)=29(x1)−4/3=−29(x1)4/3.

We find that f(x)

is defined for all x,

but is undefined when x=1.

Therefore, divide the interval (,)

into the smaller intervals (,1)

and (1,),

and choose test points to evaluate the sign of f(x)

in each of these intervals. As we did earlier, let x=0

and x=2

be test points as shown in the following table.

Interval Test Point Sign of f(x)=−29(x1)4/3
Conclusion  
{: valign=”top”} ———-
(,1)  
x=0
/+=
f
is concave down.  
{: valign=”top”} (1,)
x=2
/+=
f

is concave down. | {: valign=”top”}{: .unnumbered summary=”This table has four columns and three rows. The first row is a header row, and it reads Interval, Test Point, Sign of f’’(x) = −2/(9(x − 1)4/3), and Conclusion. Under the header row, the first column reads (−∞, 1) and (1, ∞). The second column reads x = 0 and x = 2. The third column reads −/+ = − and −/+ = −. The fourth column reads f is concave down and f is concave down.” data-label=””}

From this table, we conclude that f

is concave down everywhere. Combining all of this information, we arrive at the following graph for f.

The function f(x) = (x − 1)2/3 is graphed. It touches the x axis at x = 1, where it comes to something of a sharp point and then flairs out on either side.

Consider the function f(x)=5x2/3.

Determine the point on the graph where a cusp is located. Determine the end behavior of f.

The function f

has a cusp at (0,5)

limx0f(x)=, limx0+f(x)=.

For end behavior, limx±f(x)=.

Hint

A function f

has a cusp at a point a

if f(a)

exists, f(a)

is undefined, one of the one-sided limits as xa

of f(x)

is +,

and the other one-sided limit is .

Key Concepts

For the following exercises, examine the graphs. Identify where the vertical asymptotes are located.

![The function graphed decreases very rapidly as it approaches x = 1 from the left, and on the other side of x = 1, it seems to start near infinity and then decrease rapidly.](/calculus-book/resources/CNX_Calc_Figure_04_06_201.jpg)
x=1
![The function graphed increases very rapidly as it approaches x = −3 from the left, and on the other side of x = −3, it seems to start near negative infinity and then increase rapidly to form a sort of U shape that is pointing down, with the other side of the U being at x = 2. On the other side of x = 2, the graph seems to start near infinity and then decrease rapidly.](/calculus-book/resources/CNX_Calc_Figure_04_06_202.jpg)
![The function graphed decreases very rapidly as it approaches x = −1 from the left, and on the other side of x = −1, it seems to start near negative infinity and then increase rapidly to form a sort of U shape that is pointing down, with the other side of the U being at x = 2. On the other side of x = 2, the graph seems to start near infinity and then decrease rapidly.](/calculus-book/resources/CNX_Calc_Figure_04_06_203.jpg)
x=−1,x=2
![The function graphed decreases very rapidly as it approaches x = 0 from the left, and on the other side of x = 0, it seems to start near infinity and then decrease rapidly to form a sort of U shape that is pointing up, with the other side of the U being at x = 1. On the other side of x = 1, there is another U shape pointing down, with its other side being at x = 2. On the other side of x = 2, the graph seems to start near negative infinity and then increase rapidly.](/calculus-book/resources/CNX_Calc_Figure_04_06_204.jpg)
![The function graphed decreases very rapidly as it approaches x = 0 from the left, and on the other side of x = 0, it seems to start near infinity and then decrease rapidly to form a sort of U shape that is pointing up, with the other side being a normal function that appears as if it will take the entirety of the values of the x-axis.](/calculus-book/resources/CNX_Calc_Figure_04_06_205.jpg)
x=0

For the following functions f(x),

determine whether there is an asymptote at x=a.

Justify your answer without graphing on a calculator.

f(x)=x+1x2+5x+4,a=−1
f(x)=xx2,a=2

Yes, there is a vertical asymptote

f(x)=(x+2)3/2,a=−2
f(x)=(x1)−1/3,a=1

Yes, there is vertical asymptote

f(x)=1+x−2/5,a=1

For the following exercises, evaluate the limit.

limx13x+6
0
limx2x54x
limxx22x+5x+2
limx3x32xx2+2x+8
limxx44x3+122x27x4
17
limx3xx2+1
limx4x21x+2
−2
limx4xx21
limx4xx21
−4
limx2xxx+1

For the following exercises, find the horizontal and vertical asymptotes.

f(x)=x9x

Horizontal: none, vertical: x=0

f(x)=11x2
f(x)=x34x2

Horizontal: none, vertical: x=±2

f(x)=x2+3x2+1
f(x)=sin(x)sin(2x)

Horizontal: none, vertical: none

f(x)=cosx+cos(3x)+cos(5x)
f(x)=xsin(x)x21

Horizontal: y=0,

vertical: x=±1

f(x)=xsin(x)
f(x)=1x3+x2

Horizontal: y=0,

vertical: x=0

and x=−1

f(x)=1x12x
f(x)=x3+1x31

Horizontal: y=1,

vertical: x=1

f(x)=sinx+cosxsinxcosx
f(x)=xsinx

Horizontal: none, vertical: none

f(x)=1xx

For the following exercises, construct a function f(x)

that has the given asymptotes.

x=1

and y=2

Answers will vary, for example: y=2xx1

x=1

and y=0

y=4, x=−1

Answers will vary, for example: y=4xx+1

x=0

For the following exercises, graph the function on a graphing calculator on the window x=[−5,5]

and estimate the horizontal asymptote or limit. Then, calculate the actual horizontal asymptote or limit.

[T] f(x)=1x+10

y=0

[T] f(x)=x+1x2+7x+6

[T] limxx2+10x+25

[T] limxx+2x2+7x+6

[T] limx3x+2x+5

y=3

For the following exercises, draw a graph of the functions without using a calculator. Be sure to notice all important features of the graph: local maxima and minima, inflection points, and asymptotic behavior.

y=3x2+2x+4
y=x33x2+4

The function starts in the third quadrant, increases to pass through (−1, 0), increases to a maximum and y intercept at 4, decreases to touch (2, 0), and then increases to (4, 20).

y=2x+1x2+6x+5
y=x3+4x2+3x3x+9

An upward-facing parabola with minimum between x = 0 and x = −1 with y intercept between 0 and 1.

y=x2+x2x23x4
y=x25x+4

This graph starts at (−2, 4) and decreases in a convex way to (1, 0). Then the graph starts again at (4, 0) and increases in a convex way to (6, 3).

y=2x16x2
y=cosxx,

on x=[−2π,2π]


This graph has vertical asymptote at x = 0. The first part of the function occurs in the second and third quadrants and starts in the third quadrant just below (−2π, 0), increases and passes through the x axis at −3π/2, reaches a maximum and then decreases through the x axis at −π/2 before approaching the asymptote. On the other side of the asymptote, the function starts in the first quadrant, decreases quickly to pass through π/2, decreases to a local minimum and then increases through (3π/2, 0) before staying just above (2π, 0).

y=exx3
y=xtanx,x=[π,π]

This graph has vertical asymptotes at x = ±π/2. The graph is symmetric about the y axis, so describing the left hand side will be sufficient. The function starts at (−π, 0) and decreases quickly to the asymptote. Then it starts on the other side of the asymptote in the second quadrant and decreases to the the origin.

y=xln(x),x>0
y=x2sin(x),x=[−2π,2π]

This function starts at (−2π, 0), increases to near (−3π/2, 25), decreases through (−π, 0), achieves a local minimum and then increases through the origin. On the other side of the origin, the graph is the same but flipped, that is, it is congruent to the other half by a rotation of 180 degrees.

For f(x)=P(x)Q(x)

to have an asymptote at y=2

then the polynomials P(x)

and Q(x)

must have what relation?

For f(x)=P(x)Q(x)

to have an asymptote at x=0,

then the polynomials P(x)

and Q(x).

must have what relation?

The degree of Q(x)

must be greater than the degree of P(x)

.

If f(x)

has asymptotes at y=3

and x=1,

then f(x)

has what asymptotes?

Both f(x)=1(x1)

and g(x)=1(x1)2

have asymptotes at x=1

and y=0.

What is the most obvious difference between these two functions?

limx1f(x)=-∞andlimx1g(x)=

True or false: Every ratio of polynomials has vertical asymptotes.

Glossary

end behavior
the behavior of a function as x

and

x
horizontal asymptote
if limxf(x)=L

or

limxf(x)=L,

then

y=L

is a horizontal asymptote of

f
infinite limit at infinity
a function that becomes arbitrarily large as x becomes large
limit at infinity
the limiting value, if it exists, of a function as x

or

x
oblique asymptote
the line y=mx+b

if

f(x)

approaches it as

x

or

x

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

You can also download for free at http://cnx.org/contents/9a1df55a-b167-4736-b5ad-15d996704270@5.1

Attribution: