Arithmetic Sequences

By the end of this section, you will be able to:

Before you get started, take this readiness quiz.

  1. Evaluate 4n1

    for the integers 1, 2, 3, and 4.


    If you missed this problem, review [link].

  2. Solve the system of equations: {x+y=73x+4y=23.

    If you missed this problem, review [link].

  3. If f(n)=n2(3n+5),

    find

    f(1)+f(20).

    If you missed this problem, review [link].

Determine if a Sequence is Arithmetic

The last section introduced sequences and now we will look at two specific types of sequences that each have special properties. In this section we will look at arithmetic sequences and in the next section, geometric sequences.

An arithmetic sequence is a sequence where the difference between consecutive terms is constant. The difference between consecutive terms in an arithmetic sequence, anan1,

is d, the common difference, for n greater than or equal to two.

Arithmetic Sequence

An arithmetic sequence is a sequence where the difference between consecutive terms is always the same.

The difference between consecutive terms, anan1,

is d, the common difference, for n greater than or equal to two.

This figure has two rows and three columns. The first row reads “7”, “10”,”13”, “16”, “19”, “22”, and an ellipsis, “10 minus 7, divided by 3”, “13 minus 10, divided by 3”, “16 minus 13, divided by 3”, nth term equals nth term minus 1 divided by d” In each of these sequences, the difference between consecutive terms is constant, and so the sequence is arithmetic.

Determine if each sequence is arithmetic. If so, indicate the common difference.

5,9,13,17,21,25,

4,9,12,17,20,25,

10,3,−4,−11,−18,−25,

To determine if the sequence is arithmetic, we find the difference of the consecutive terms shown.

* * *

Find the difference ofthe consecutive terms.5,9,13,1721,25, 95139171321172521 44444 The sequence is arithmetic. The common difference isd=4.

* * *

Find the difference ofthe consecutive terms.4,9,12,1720,25, 94129171220172520 23535 The sequence is not arithmetic as all the differences betweenthe consecutive terms are not the same.There is no common difference.

* * *

Find the difference ofthe consecutive terms.10,3,−4,−11−18,−25, 310−43−11(−4)−18(−11)−25(−18) −7−7−7−7−7 The sequence is arithmetic. The common difference isd=−7.

Determine if each sequence is arithmetic. If so, indicate the common difference.

9,20,31,42,53,64,

12,6,0,−6,−12,−18,

7,1,10,4,13,7,

The sequence is arithmetic with common difference d=11

. The sequence is arithmetic with common difference d=−6

.* * *

The sequence is not arithmetic as all the differences between the consecutive terms are not the same.

Determine if each sequence is arithmetic. If so, indicate the common difference.

−4,4,2,10,8,16,

−3,−1,1,3,5,7,

7,2,−3,−8,−13,−18,

The sequence is not arithmetic as all the differences between the consecutive terms are not the same. The sequence is arithmetic with common difference d=2.


The sequence is arithmetic with common difference d=−5.

If we know the first term, a1,

and the common difference, d, we can list a finite number of terms of the sequence.

Write the first five terms of the sequence where the first term is 5 and the common difference is d=−6.

We start with the first term and add the common difference. Then we add the common difference to that result to get the next term, and so on.

a1a2a3a4a555+(−6)−1+(−6)−7+(−6)−13+(−6)−1−7−13−19

The sequence is 5,−1,−7,−13,−19,

Write the first five terms of the sequence where the first term is 7 and the common difference is d=−4.

7,3,−1,−5,−9,

Write the first five terms of the sequence where the first term is 11 and the common difference is d=−8.

11,3,−5,−13,−21,

Find the General Term (nth Term) of an Arithmetic Sequence

Just as we found a formula for the general term of a sequence, we can also find a formula for the general term of an arithmetic sequence.

Let’s write the first few terms of a sequence where the first term is a1

and the common difference is d. We will then look for a pattern.

As we look for a pattern we see that each term starts with a1

.

This figures shows an image of a sequence. The first term adds 0d to the a1

, the second term adds 1d, the third term adds 2d, the fourth term adds 3d, and the fifth term adds 4d. The number of ds that were added to a1

is one less than the number of the term. This leads us to the following

an=a1+(n1)d
General Term (*n*th term) of an Arithmetic Sequence

The general term of an arithmetic sequence with first term a1

and the common difference d is

an=a1+(n1)d

We will use this formula in the next example to find the 15th term of a sequence.

Find the fifteenth term of a sequence where the first term is 3 and the common difference is 6.

To find the fifteenth term,a15,use thean=a1+(n1)dformula witha1=3andd=6. Substitute in the values.a15=3+(151)6Simplify.a15=3+(14)6a15=87

Find the twenty-seventh term of a sequence where the first term is 7 and the common difference is 9.

241

Find the eighteenth term of a sequence where the first term is 13 and the common difference is −7

.

−106

Sometimes we do not know the first term and we must use other given information to find it before we find the requested term.

Find the twelfth term of a sequence where the seventh term is 10 and the common difference is −2

. Give the formula for the general term.

To first find the first term,a1,use thean=a1+(n1)d formula witha7=10,n=7,andd=−2. Substitute in the values.10=a1+(71)(−2) Simplify.10=a1+(6)(−2) 10=a112 a1=22 Find the twelfth term,a12,using thean=a1+(n1)d formula witha1=22,n=12,andd=−2. Substitute in the values.a12=22+(121)(−2) Simplify.a12=22+(11)(−2) a12=0 The twelfth term of the sequence is 0,a12=0. To find the general term, substitutean=a1+(n1)d the values into the formula. an=22+(n1)(−2) an=222n+2 The general term isan=−2n+24.

Find the eleventh term of a sequence where the ninth term is 8 and the common difference is −3.

Give the formula for the general term.

a11=2.

The general term is an=−3n+35.

Find the nineteenth term of a sequence where the fifth term is 1 and the common difference is −4.

Give the formula for the general term.

a19=−55.

The general term is an=−4n+21.

Sometimes the information given leads us to two equations in two unknowns. We then use our methods for solving systems of equations to find the values needed.

Find the first term and common difference of a sequence where the fifth term is 19 and the eleventh term is 37. Give the formula for the general term.

Since we know two terms, we can make a system of equations using the formula for the general term.

.
We know the value of a5 and a11, so we will use n=5 and n=11. .
Substitute in the values, a5=19 and a11=37. .
Simplify. .
Prepare to eliminate the a1 term by multiplying the top equation by −1.
Add the equations.
.

Substituting d=3 back into the first equation.

.
Solve for a1. .

Use the formula with a1=7 and d=3.

.
Substitute in the values. .
Simplify. .
The first term is a1=7.
The common difference is d=3.

The general term of the sequence is an=3n+4.

Find the first term and common difference of a sequence where the fourth term is 17 and the thirteenth term is 53. Give the formula for the general term.

a1=5, d=4.

The general term is an=4n+1.

Find the first term and common difference of a sequence where the third term is 2 and the twelfth term is −25.

Give the formula for the general term.

a1=8, d=−3.

The general term is an=−3n+11.

Find the Sum of the First n Terms of an Arithmetic Sequence

As with the general sequences, it is often useful to find the sum of an arithmetic sequence. The sum, Sn,

of the first n

terms of any arithmetic sequence is written as Sn=a1+a2+a3+...+an.

To find the sum by merely adding all the terms can be tedious. So we can also develop a formula to find the sum of a sequence using the first and last term of the sequence.

We can develop this new formula by first writing the sum by starting with the first term, a1,

and keep adding a d to get the next term as:

Sn=a1+(a1+d)+(a1+2d)++an.

We can also reverse the order of the terms and write the sum by starting with an

and keep subtracting d to get the next term as

Sn=an+(and)+(an2d)++a1.

If we add these two expressions for the sum of the first n terms of an arithmetic sequence, we can derive a formula for the sum of the first n terms of any arithmetic series.

Sn=a1+(a1+d)+(a1+2d)++an+Sn=an+(and)+(an2d)++a1\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_2Sn=(a1+an)+(a1+an)+(a1+an)++(a1+an)

Because there are n sums of (a1+an)

on the right side of the equation, we rewrite the right side as n(a1+an).

2Sn=n(a1+an)

We divide by two to solve for Sn.

Sn=n2(a1+an)

This give us a general formula for the sum of the first n terms of an arithmetic sequence.

Sum of the First *n* Terms of an Arithmetic Sequence

The sum, Sn,

of the first n terms of an arithmetic sequence is

Sn=n2(a1+an)

where a1

is the first term and an

is the nth term.

We apply this formula in the next example where the first few terms of the sequence are given.

Find the sum of the first 30 terms of the arithmetic sequence: 8, 13, 18, 23, 28, …

To find the sum, we will use the formula Sn=n2(a1+an).

We know a1=8

, d=5

and n=30,

but we need to find an

in order to use the sum formula.

an=a1+(n1)d Findanwherea1=8,d=5andn=30.a30=8+(301)5 Simplify.a30=8+(29)5 a30=153 Knowinga1=8,n=30,anda30=153, use the sum formula.Sn=n2(a1+an) Substitute in the values.S30=302(8+153) Simplify.S30=15(161) Simplify.S30=2,415

Find the sum of the first 30 terms of the arithmetic sequence: 5, 9, 13, 17, 21, …

1,890

Find the sum of the first 30 terms of the arithmetic sequence: 7, 10, 13, 16, 19, …

1,515

In the next example, we are given the general term for the sequence and are asked to find the sum of the first 50 terms.

Find the sum of the first 50 terms of the arithmetic sequence whose general term is an=3n4.

To find the sum, we will use the formula Sn=n2(a1+an).

We know n=50,

but we need to find a1

and an

in order to use the sum formula.

  .
Find a1,  

by substituting n=1.

.
Find an

by substituting n=50.

.  
Simplify. .
Knowing n=50,  
a1=−1,

and a50=146

use the sum formula. .  
  Substitute in the values. .
  Simplify. .
  Simplify. .

Find the sum of the first 50 terms of the arithmetic sequence whose general term is an=2n5.

2,300

Find the sum of the first 50 terms of the arithmetic sequence whose general term is an=4n+3.

5,250

In the next example we are given the sum in summation notation. To add all the terms would be tedious, so we extract the information needed to use the formula to find the sum of the first n terms.

Find the sum: i=125(4i+7).

To find the sum, we will use the formula Sn=n2(a1+an).

We know n=25,

but we need to find a1

and an

in order to use the sum formula.

Expand the summation notation. .
Simplify. .
Identify a1. .
Identify a25. .
Knowing n=25,a1=11, and a25=107
use the sum formula.
.
Substitute in the values. .
Simplify. .
Simplify. .

Find the sum: i=130(6i4).

2,670

Find the sum: i=135(5i3).

3,045

Access these online resources for additional instruction and practice with arithmetic sequences

Key Concepts

Practice Makes Perfect

Determine if a Sequence is Arithmetic

In the following exercises, determine if each sequence is arithmetic, and if so, indicate the common difference.

4,12,20,28,36,44,

The sequence is arithmetic with common difference d=8.

−7,−2,3,8,13,18,
−15,−16,3,12,21,30,

The sequence is not arithmetic.

11,5,−1,−713,−19,
8,5,2,−1,−4,−7,

The sequence is arithmetic with common difference d=−3.

15,5,−5,−15,−25,−35,

In the following exercises, write the first five terms of each sequence with the given first term and common difference.

a1=11

and d=7

11,18,25,32,39
a1=18

and d=9

a1=−7

and d=4

−7,−3,1,5,9
a1=−8

and d=5

a1=14

and d=−9

14,5,−4,−13,−22
a1=−3

and d=−3

Find the General Term (nth Term) of an Arithmetic Sequence

In the following exercises, find the term described using the information provided.

Find the twenty-first term of a sequence where the first term is three and the common difference is eight.

163

Find the twenty-third term of a sequence where the first term is six and the common difference is four.

Find the thirtieth term of a sequence where the first term is −14

and the common difference is five.

131

Find the fortieth term of a sequence where the first term is −19

and the common difference is seven.

Find the sixteenth term of a sequence where the first term is 11 and the common difference is −6.

−79

Find the fourteenth term of a sequence where the first term is eight and the common difference is −3.

Find the twentieth term of a sequence where the fifth term is −4

and the common difference is −2.

Give the formula for the general term.

a20=−34.

The general term is an=−2n+6.

Find the thirteenth term of a sequence where the sixth term is −1

and the common difference is −4.

Give the formula for the general term.

Find the eleventh term of a sequence where the third term is 19 and the common difference is five. Give the formula for the general term.

a11=59.

The general term is an=5n+4.

Find the fifteenth term of a sequence where the tenth term is 17 and the common difference is seven. Give the formula for the general term.

Find the eighth term of a sequence where the seventh term is −8

and the common difference is −5.

Give the formula for the general term.

a8=−13.

The general term is an=−5n+27.

Find the fifteenth term of a sequence where the tenth term is −11

and the common difference is −3.

Give the formula for the general term.

In the following exercises, find the first term and common difference of the sequence with the given terms. Give the formula for the general term.

The second term is 14 and the thirteenth term is 47.

a1=11, d=3.

The general term is an=3n+8.

The third term is 18 and the fourteenth term is 73.

The second term is 13 and the tenth term is −51.

a1=21, d=−8.

The general term is an=−8n+29.

The third term is four and the tenth term is −38

.

The fourth term is −6

and the fifteenth term is 27.

a1=−15, d=3.

The general term is an=3n18.

The third term is −13

and the seventeenth term is 15.

Find the Sum of the First n Terms of an Arithmetic Sequence

In the following exercises, find the sum of the first 30 terms of each arithmetic sequence.

11,14,17,20,23,

1,635

12,18,24,30,36,
8,5,2,−1,−4,
−1,065
16,10,4,−2,−8,
−17,−15,−13,−11,−9,

360

−15,−12,−9,−6,−3,

In the following exercises, find the sum of the first 50 terms of the arithmetic sequence whose general term is given.

an=5n1

6,325

an=2n+7
an=−3n+5

–3,575

an=−4n+3

In the following exercises, find each sum.

i=140(8i7)

6,280

i=145(7i5)
i=150(3i+6)

4,125

i=125(4i+3)
i=135(−6i2)
−3,850
i=130(−5i+1)

Writing Exercises

In your own words, explain how to determine whether a sequence is arithmetic.

Answers will vary.

In your own words, explain how the first two terms are used to find the tenth term. Show an example to illustrate your explanation.

In your own words, explain how to find the general term of an arithmetic sequence.

Answers will vary.

In your own words, explain how to find the sum of the first n

terms of an arithmetic sequence without adding all the terms.

Self Check

After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

This figure shows a chart with four rows and four columns. The first row is the header row and reads, “I can”, “Confidently”, “With some help”, and “No, I don’t get it!” The column, beginning with second row reads 1. Determine if a Sequence is Arithmetic, 2. Find the General Term (nth term) of Arithmetic Sequence, and 3. Find the sum of the first Terms of an Arithmetic Sequence”. The remaining columns are blank. After reviewing this checklist, what will you do to become confident for all objectives?

Glossary

arithmetic sequence
An arithmetic sequence is a sequence where the difference between consecutive terms is constant.
common difference
The difference between consecutive terms in an arithmetic sequence, anan1,

is d, the common difference, for n greater than or equal to two.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

You can also download for free at http://cnx.org/contents/02776133-d49d-49cb-bfaa-67c7f61b25a1@4.13

Attribution: